ARID1A, one of the subunits in SWI/SNF chromatin remodeling complex, is frequently mutated in gastric cancers with microsatellite instability (MSI). The most frequent MSI in solid-type poorly differentiated adenocarcinoma (PDA) has been reported, but the SWI/SNF complex status in solid-type PDA is still largely unknown. We retrospectively analyzed 54 cases of solid-type PDA for the expressions of mismatch repair (MMR) proteins (MLH1, PMS2, MSH2, and MSH6), SWI/SNF complex subunits (ARID1A, INI1, BRG1, BRM, BAF155, and BAF170) and EBER, and mutations in KRAS and BRAF. We analyzed 40 cases of another histological type of gastric cancer as a control group. The solid-type PDAs showed coexisting glandular components (76%), MMR deficiency (39%), and complete/partial loss of ARID1A (31%/7%), INI1 (4%/4%), BRG1 (48%/30%), BRM (33%/33%), BAF155 (13%/41%), and BAF170 (6%/2%), EBER positivity (4%), KRAS mutation (2%), and BRAF mutation (2%). Compared to the control group, MMR deficiency and losses of ARID1A, BRG1, BRM, and BAF155 were significantly frequent in solid-type PDAs. Mismatch repair deficiency was associated with the losses of ARID1A, BRG1, and BAF155 in solid-type PDAs. In the MMR-deficient group, solid components showed significantly more frequent losses of ARID1A, BRG1, BRM, and BAF155 compared to glandular components (P = .0268, P = .0181, P = .0224, and P = .0071, respectively). In the MMR-proficient group, solid components showed significantly more frequent loss of BRG1 compared to glandular components (P = .012). In conclusion, solid-type PDAs showed frequent losses of MMR proteins and the SWI/SNF complex. We suggest that loss of the SWI/SNF complex could induce a morphological shift from differentiated-type adenocarcinoma to solid-type PDA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060473PMC
http://dx.doi.org/10.1111/cas.14301DOI Listing

Publication Analysis

Top Keywords

swi/snf complex
20
solid-type pdas
16
mismatch repair
12
solid-type pda
12
brg1 brm
12
brm baf155
12
glandular components
12
losses arid1a
12
arid1a brg1
12
solid-type
9

Similar Publications

The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.

View Article and Find Full Text PDF

Background: Atypical teratoid rhabdoid tumor (ATRT) is the most common malignant brain tumor in infants, and more than 60% of children with ATRT die from their tumor. ATRT is associated with mutational inactivation/deletion of , a member of the SWI/SNF chromatin remodeling complex, suggesting that epigenetic events play a critical role in tumor development and progression. Moreover, disruption of SWI/SNF allows unopposed activity of epigenetic repressors, which contribute to tumorigenicity.

View Article and Find Full Text PDF

The 2022 World Health Organization classification introduced the term high-grade follicular cell-derived nonanaplastic thyroid carcinoma (HGFCTC) to define invasive/infiltrative nonanaplastic thyroid carcinoma with high-grade features, including poorly differentiated thyroid carcinoma and high-grade differentiated thyroid carcinoma. Our objectives were to compare clinicopathological characteristics, oncologic outcomes, and mutation profiles among HGFCTC subgroups to better inform prognostication and treatment. In this single-center, retrospective cohort study of 252 patients who had surgery for HGFCTC from 1986 to 2020, we categorized HGFCTC and its related entity, "encapsulated noninvasive neoplasms of follicular cells with high-grade features," into five subgroups: (A) encapsulated noninvasive, (B) encapsulated with capsular invasion only (minimally invasive), (C) encapsulated angioinvasive with focal vascular invasion (VI), (D) encapsulated angioinvasive with extensive VI, and (E) infiltrative tumors.

View Article and Find Full Text PDF

Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases.

Clin Rev Allergy Immunol

December 2024

Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.

The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.

View Article and Find Full Text PDF

The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!