A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of Channel Selection for Gesture Classification for Prosthesis Control Using Force Myography: A Case Study. | LitMetric

Investigation of Channel Selection for Gesture Classification for Prosthesis Control Using Force Myography: A Case Study.

Front Bioeng Biotechnol

Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada.

Published: December 2019

Various human machine interfaces (HMIs) are used to control prostheses, such as robotic hands. One of the promising HMIs is Force Myography (FMG). Previous research has shown the potential for the use of high density FMG (HD-FMG) that can lead to higher accuracy of prosthesis control. The more sensors used in an FMG controlled system, the more complicated and costlier the system becomes. This study proposes a design method that can produce powered prostheses with performance comparable to that of HD-FMG controlled systems using a fewer number of sensors. An HD-FMG apparatus would be used to collect information from the user only in the design phase. Channel selection would then be applied to the collected data to determine the number and location of sensors that are vital to performance of the device. This study assessed the use of multiple channel selection (CS) methods for this purpose. In this case study, three datasets were used. These datasets were collected from force sensitive resistors embedded in the inner socket of a subject with transradial amputation. Sensor data were collected as the subject carried out five repetitions of six gestures. Collected data were then used to asses five CS methods: Sequential forward selection (SFS) with two different stopping criteria, minimum redundancy-maximum relevance (mRMR), genetic algorithm (GA), and Boruta. Three out of the five methods (mRMR, GA, and Boruta) were able to decrease channel numbers significantly while maintaining classification accuracy in all datasets. Neither of them outperformed the other two in all datasets. However, GA resulted in the smallest channel subset in all three of the datasets. The three selected methods were also compared in terms of stability [i.e., consistency of the channel subset chosen by the method as new training data were introduced or some training data were removed (Chandrashekar and Sahin, 2014)]. Boruta and mRMR resulted in less instability compared to GA when applied to the datasets of this study. This study shows feasibility of using the proposed design method that can produce prosthetic systems that are simpler than HD-FMG systems but have performance comparable to theirs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914858PMC
http://dx.doi.org/10.3389/fbioe.2019.00331DOI Listing

Publication Analysis

Top Keywords

channel selection
12
prosthesis control
8
force myography
8
case study
8
design method
8
method produce
8
performance comparable
8
collected data
8
three datasets
8
channel subset
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!