This study aimed to identify the roles of the long non-coding RNA in colorectal cancer (CRC) development. The expression levels of and miR-133b in CRC were determined by reverse transcription (RT)-polymerase chain reaction (PCR) and the functions of in CRC were evaluated and . Methylation-specific PCR assay was performed to detect the miR-133b promoter methylation in CRC cells. Bioinformatics analysis, RNA immunoprecipitation, dual luciferase assay, RNA pull-down, co-immunoprecipitation (IP), and chromatin IP (ChIP) assays were used to elucidate whether could recruit EZH2/DNMT1 and bind to the miR-133b promoter region, leading to dysregulated methylation and the depression of miR-133b. The expression levels of DNA methyltransferases (DNMTs), EZH2, and nucleoporin 214(NUP214) were analyzed by western blotting. Data showed that was highly expressed, whereas miR-133b was downregulated in the CRC tissues and cells. , silencing inhibited cell proliferation and impeded cell cycle at the G1/S phase by upregulating miR-133b. knockdown reduced tumor growth. Further analysis showed that the methylation in miR-133b promoter region was increased in the CRC and silencing increased miR-133b expression through depressing methylation of its promoter region. ChIP-PCR experiments demonstrated that EZH2 and DNMT1 could bind to the miR-133b promoter region and it was abolished by knockdown. sh-EZH2 reversed the overexpression of DNMTs and CRC cell cycle progression induced by the upregulation. LINC00114 could regulate the NUP214 protein expression by sponging miR-133b. These results demonstrated that suppressed miR-133b expression via EZH2/DNMT1-mediated methylation of its promoter region, indicating that might be a potential novel target for CRC diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928983 | PMC |
http://dx.doi.org/10.3389/fonc.2019.01383 | DOI Listing |
Plant Cell Rep
January 2025
School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China.
NnNAC100-NnSBEII modules enhance starch content of the rhizome in Nelumbo nucifera Gaertn. Nelumbo nucifera Gaertn. is a popular aquatic vegetable and traditional Chinese medicine whose quality and taste are mainly determined by the starch.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Cell Biology and Pathology, New York, NY, USA.
Background: Possession of the APOE4 allele is the strongest genetic risk factor for developing the sporadic form of Alzheimer's disease (AD). Studies investigating APOE4's associated AD risk have largely centered on APOE4's propensity to regulate the deposition of extracellular amyloid beta plaques. More recent attempts to characterize APOE4's role in AD have brought into question the role APOE4 may possess in modulating the pathogenesis of intracellular tau tangles.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Background: Recent studies suggest genome-wide-association-studies (GWAS) loci confer their effects on microglia in late-onset Alzheimer's disease (LOAD) brains. Relatively fewer studies have investigated the effects of other genome-wide significant loci (p<5e) using human neurons.
Method: GWAS itself cannot directly identify causal variant-(effector)gene-pairs as GWAS only reports the sentinel variant at a given locus.
Alzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Determining the precise genetic mechanisms that contribute to LOAD, both in coding and noncoding variants, will enable a deeper understanding of pathogenesis and advance preclinical models for the testing of targeted therapeutics.
Methods: We have introduced candidate genetic variants in the EPHA1, BIN1, CD2AP, SCIMP, KLOTHO, PTK2B, ADAMTS4, IL1RAP, IL34, and PTPRB loci into a sensitized mouse model already harboring humanized amyloid-beta, APOE4, and Trem2.R47H alleles knocked in to a C57BL/6J background.
Alzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: Alzheimer's disease (AD), characterized by tau lesions and amyloid plaques, has traditionally been investigated within the cortical domain. Recent neuroimaging studies have implicated micro- and macrostructural abnormalities in cortical layers during the progression of AD. While examinations from diverse brain regions have contributed to comprehending the regional severity, these approaches have constrained the ability to delineate cortical alterations in AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!