Higher temperatures induced by the on-going climate change are a major cause of yield reduction in legumes. Pea ( L.) is an important annual legume crop grown in temperate regions for its high seed nitrogen (N) concentration. In addition to yield, seed N amount at harvest is a crucial characteristic because pea seeds are a source of protein in animal and human nutrition. However, there is little knowledge on the impacts of high temperatures on plant N partitioning determining seed N amount. Therefore, this study investigates the response of seed dry matter and N fluxes at the whole-plant level (plant N uptake, partitioning in vegetative organs, remobilization, and accumulation in seeds) to a range of air temperature (from 18.4 to 33.2°C) during the seed-filling-period. As pea is a legume crop, plants relying on two different N nutrition pathways were grown in glasshouse: N-fixing plants or NO -assimilating plants. Labeled nitrate (NO ) and intra-plant N budgets were used to quantify N fluxes. High temperatures decreased seed-filling duration (by 0.8 day per °C), seed dry-matter and N accumulation rates (respectively by 0.8 and 0.032 mg seed day per °C), and N remobilization from vegetative organs to seeds (by 0.053 mg seed day per °C). Plant N-fixation decreased with temperatures, while plant NO assimilation increased. However, the additional plant N uptake in NO -assimilating plants was never allocated to seeds and a significant quantity of N was still available at maturity in vegetative organs, whatever the plant N nutrition pathway. Thus, we concluded that seed N accumulation under high temperatures is sink limited related to a shorter seed-filling duration and a reduced seed dry-matter accumulation rate. Consequently, sustaining seed sink demand and preserving photosynthetic capacity of stressed plants during the seed-filling period should be promising strategies to promote N allocation to seeds from vegetative parts and thus to maintain crop N production under exacerbated abiotic constraints in field due to the on-going climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934051 | PMC |
http://dx.doi.org/10.3389/fpls.2019.01608 | DOI Listing |
BMC Res Notes
January 2025
Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan.
Objective: Patients with cardiovascular disease are considered a high-risk population for heat-related illnesses. This study aimed to describe the difference in physical activity between summer and fall among patients with cardiovascular disease and their recognition of heatstroke prevention in an urban area with high temperature conditions.
Results: We enrolled 56 outpatients who participated in cardiac rehabilitation in the summer of 2022 (median age, 75 years [interquartile range, 68-80]).
Sci Rep
January 2025
Department of Food Engineering and Technology, Tezpur University, Tezpur, India.
This study explores the impact of natural deep eutectic solvents (NADES) on the structure and functionality of treebean (Parkia timoriana) seed protein, a novel approach to enhancing protein stability and functionality for sustainable bioprocessing. The research aims to evaluate the dynamic interactions between protein and choline chloride-sugar-based NADES, focusing on their effects on thermal properties, emulsification behaviour, and rheological characteristics. NADES were formulated using different sugars, and protein-NADES dispersions were analysed for their physicochemical and functional properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
With the increasing demand on high-density integration and better performance of micro-nano optoelectronic devices, the operation temperatures are expected to significantly increase under some extreme conditions, posing a risk of degradation to metal-based micro-/nano-structured metasurfaces due to their low tolerance to high temperature. Therefore, it is urgent to find new materials with high-conductivity and excellent high-temperature resistance to replace traditional micro-nano metal structures. Herein, we have proposed and fabricated a thermally stable graphene assembly film (GAF), which is calcined at ultra-high temperature (~ 3000 ℃) during the reduction of graphite oxide (GO).
View Article and Find Full Text PDFMicrob Ecol
January 2025
Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, México.
Mezcal, a traditional Mexican alcoholic beverage, has been a vital source of livelihood for indigenous and rural communities for centuries. However, increasing international demand is exerting pressure on natural resources and encouraging intensive agricultural practices. This study investigates the impact of management practices (wild, traditional, and conventional) and environmental factors on the microbial communities associated with Agave angustifolia, a key species in mezcal production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!