Basic leucine zipper (bZIP) membrane-bound transcription factors (MTFs) play important roles in regulating plant growth and development, abiotic stress responses, and disease resistance. Most bZIP MTFs are key components of signaling pathways in endoplasmic reticulum (ER) stress responses. In this study, a full-length cDNA sequence encoding bZIP MTF, designated , was isolated from a cDNA library of wheat near-isogenic lines of Taichung29*6/ inoculated with an incompatible race CYR32 of f. sp. (). Phylogenic analysis showed that is highly homologous to in maize and in rice. The mRNA of was predicted to form a secondary structure with two kissing hairpin loops that could be spliced, causing an open reading frame shift immediately before the hydrophobic region to produce a new TabZIP74 protein without the transmembrane domain. infection and the abiotic polyethylene glycol (PEG) and abscisic acid (ABA) treatments lead to mRNA splicing in wheat seedling leaves, while both spliced and unspliced forms in roots were detected. In the confocal microscopic examination, TabZIP74 is mobilized in the nucleus from the membrane of tobacco epidermal cells in response to wounding. Knocking down with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced wheat seedling susceptibility to stripe rust and decreased drought tolerance and lateral roots of silenced plants. These findings demonstrate that mRNA is induced to splice when stressed by biotic and abiotic factors, acts as a critically positive regulator for wheat stripe rust resistance and drought tolerance, and is necessary for lateral root development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927285 | PMC |
http://dx.doi.org/10.3389/fpls.2019.01551 | DOI Listing |
Int J Mol Sci
January 2025
Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
Pathogenesis-related protein-1 (PR1) encodes a water-soluble protein produced in plants after pathogen infection or abiotic stimulation. It plays a crucial role in plant-induced resistance by attacking pathogens, degrading cell wall macromolecules and pathogen toxins, and inhibiting the binding of viral coat proteins to plant receptor molecules. Compared to model plants, the mechanism of action of PR1 in wheat remains underexplored.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
Background: Puccinia striiformis f. sp. tritici (Pst) causes wheat stripe (yellow) rust disease, which is one of the most destructive diseases affecting wheat worldwide.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Plant Pathology, Washington State University, Pullman, WA, United States.
Stripe rust of wheat is a serious disease caused by f. sp. ().
View Article and Find Full Text PDFFungal Genet Biol
February 2025
Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT 2601, Australia. Electronic address:
Wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is currently the most destructive disease of wheat.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China.
Stripe rust, induced by f. sp. (), is one of the most destructive fungal diseases of wheat worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!