The problem of food spoilage due to () needs to be resolved. In this study, we found that the minimum inhibitory concentration of cinnamaldehyde (CA) that inhibited was 0.065 mg/ml and that corn can be prevented from spoiling at a concentration of 0.13 mg/cm. In addition to inhibiting spore germination, mycelial growth, and biomass production, CA can also reduce ergosterol synthesis and can cause cytomembrane damage. Our intention was to elucidate the antifungal mechanism of CA. Flow cytometry, fluorescence microscopy, and western blot were used to reveal that different concentrations of CA can cause a series of apoptotic events in , including elevated Ca and reactive oxygen species, decrease in mitochondrial membrane potential (Δψ ), the release of cytochrome c, the activation of metacaspase, phosphatidylserine (PS) externalization, and DNA damage. Moreover, CA significantly increased the expression levels of apoptosis-related genes (, , , , , and ). In summary, our results indicate that CA is a promising antifungal agent for use in food preservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930169PMC
http://dx.doi.org/10.3389/fmicb.2019.02895DOI Listing

Publication Analysis

Top Keywords

cinnamaldehyde promising
4
promising natural
4
natural preservative
4
preservative problem
4
problem food
4
food spoilage
4
spoilage resolved
4
resolved study
4
study minimum
4
minimum inhibitory
4

Similar Publications

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

New drugs for the treatment of protozoal parasite infections such as toxoplasmosis and leishmaniasis are required. Cinnamaldehyde and its derivatives appear to be promising antiparasitic drug candidates. Acyl hydrazones of cinnamaldehyde, 4-dimethylaminocinnamaldehyde, and of the synthetic fragrances silvial and florhydral were prepared and tested for activity against () and () parasites.

View Article and Find Full Text PDF

MOF-Based Dual-Layer Pickering Emulsion: Molecular-Level Gating of Water Delivery at Water-Oil Interface for Efficient Photocatalytic Hydrogenation Using HO as a Hydrogen Source.

Angew Chem Int Ed Engl

January 2025

Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.

Article Synopsis
  • The biphasic system offers a unique approach for complex catalytic processes by combining photocatalysis with hydrogenation, highlighting both its potential and accompanying challenges.
  • Researchers utilized metal-organic frameworks (MOFs) and CdS nanorods to create a dual-layer Pickering emulsion that effectively separates the photocatalytic hydrogen evolution reaction (HER) in the aqueous phase from oil-soluble hydrogenation.
  • This innovative setup achieved an impressive hydrogenation yield of 187.37 mmol·g-1·h-1 and a high apparent quantum yield of 43.24%, demonstrating significant improvements over traditional methods and providing valuable insights for future tandem catalytic processes.
View Article and Find Full Text PDF

Background: Cinnamomum cassia Presl (Lauraceae) is widely used as a medicinal plant in the folk medicine and pharmaceutic industry, for its promising anti-inflammatory, anti-oxidative, and anti-bacterial function. However, the major bioactive components were still in debate, and their underlying molecular mechanism was not yet fully understood.

Purpose: This study aimed to identify the bioactive ingredients of C.

View Article and Find Full Text PDF

In recent years, biopolymer-based food packaging films have emerged as promising alternatives to petroleum-based plastic food packaging films. Various additives have been explored to enhance their properties, and one such group of additives is natural plant aldehydes. These aldehydes are commonly employed to improve the antibacterial and antioxidant properties of biopolymer-based food packaging films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!