Ovarian Hormone-Dependent Effects of Dietary Lipids on APP/PS1 Mouse Brain.

Front Aging Neurosci

Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.

Published: December 2019

The formation of senile plaques through amyloid-β peptide (Aβ) aggregation is a hallmark of Alzheimer's disease (AD). Irrespective of its actual role in the synaptic alterations and cognitive impairment associated with AD, different therapeutic approaches have been proposed to reduce plaque formation. In rodents, daily intake of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) is required for neural development, and there is experimental and epidemiological evidence that their inclusion in the diet has positive effects on several neurodegenerative diseases. Similarly, estradiol appears to reduce senile plaque formation in primary mouse cell cultures, human cortical neurons and mouse AD models, and it prevents Aβ toxicity in neural cell lines. We previously showed that differences in dietary n-6/n-3 LC-PUFAs ratios modify the lipid composition in the cerebral cortex of female mice and the levels of amyloid precursor protein (APP) in the brain. These effects depended in part on the presence of circulating estradiol. Here we explored whether this potentially synergistic action between diet and ovarian hormones may influence the progression of amyloidosis in an AD mouse model. Our results show that a diet with high n-3 LC-PUFA content, especially DHA (22:6n-3), reduces the hippocampal accumulation of Aβ , but not amyloid Aβ in female APPswe/PS1 E9A mice, an effect that was counteracted by the loss of the ovaries and that depended on circulating estradiol. In addition, this interaction between dietary lipids and ovarian function also affects the composition of the brain lipidome as well as the expression of certain neuronal signaling and synaptic proteins. These findings provide new insights into how ovarian hormones and dietary composition affect the brain lipidome and amyloid burden. Furthermore, they strongly suggest that when designing dietary or pharmacological strategies to combat human neurodegenerative diseases, hormonal and metabolic status should be specifically taken into consideration as it may affect the therapeutic response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930904PMC
http://dx.doi.org/10.3389/fnagi.2019.00346DOI Listing

Publication Analysis

Top Keywords

dietary lipids
8
plaque formation
8
neurodegenerative diseases
8
circulating estradiol
8
ovarian hormones
8
brain lipidome
8
dietary
5
ovarian
4
ovarian hormone-dependent
4
hormone-dependent effects
4

Similar Publications

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.

View Article and Find Full Text PDF

This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.

View Article and Find Full Text PDF

Whole grain flour is considered a part of a healthy diet, especially when produced with pigmented wheat (). However, the specific metabolic pathways and mechanisms by which these metabolites affect the end-use quality of pigmented wheat varieties still need to be better understood. This study examined the relationship between metabolite concentrations and the end-use quality of three wheat varieties: common wheat (CW, JM20), black wheat (BW, HJ1), and green wheat (GW, HZ148).

View Article and Find Full Text PDF

Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk.

Nutrients

January 2025

Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (Promise) G. D'Alessandro, University of Palermo, 90127 Palermo, Italy.

Metabolic syndrome is a cluster of risk factors, including abdominal obesity, insulin resistance, hypertension, dyslipidemia (intended as an increase in triglyceride levels and a reduction in HDL cholesterol levels), and elevated fasting glucose, that increase the risk of cardiovascular disease and type 2 diabetes. With the rising prevalence of metabolic syndrome, effective dietary interventions are essential in reducing these health risks. The Mediterranean diet, rich in fruits, vegetables, whole grains, legumes, nuts, and olive oil and moderate in fish and poultry, has shown promise in addressing metabolic syndrome and its associated components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!