Macroautophagy/autophagy is essential for maintaining cellular homeostasis through the degradation of organelles and proteins. It also has a prominent role in modulating aging. However, the role of autophagy in the neuronal response to axon injury and axon regeneration, particularly in the context of aging, remains largely unknown. Our candidate genetic screen for axon regeneration regulators has identified genes in the autophagy pathway. Using a reporter that monitors autophagosomes and autolysosomes, we were able to monitor the dynamics of autophagy during axon regeneration. In response to axon injury, there was a significant increase in the number of autophagic vesicles. Injury-triggered autophagy activation and axon regeneration capacity undergo an age-dependent decline, and autophagy-activating agents partially rescued these declines. We found that DLK-1 was both required and sufficient for injury-induced autophagy activation. Autophagic vesicles co-localized with the NOTCH4 ortholog, LIN-12 receptor, a previously identified inhibitor of axon regeneration. Epistasis analyses indicate that LIN-12 might be a target of autophagy in axon regeneration. Together, our data suggest that DLK-mediated injury signaling can activate autophagy, which might limit the level of LIN-12 and NOTCH proteins to promote axon regeneration. Our findings reveal that autophagy activation can promote axon regeneration in neurons that lack maximal regrowth capacity, providing a promising therapeutic strategy for axon injury. : 3-MA: 3-methyladenine; ALs: autolysosomes; APs: autophagosomes; ARF-6: ADP-Ribosylation Factor related 6; ATG-9: AuTophaGy (yeast Atg homolog) 9; ATG9A: autophagy related 9A; BA1: bafilomycin A; BEC-1: BEClin (human autophagy) homolog; BECN1: beclin 1; ; CEBP-1: C/EBP (CCAAT/enhancer-binding protein) homolog; CNS: central nervous system; DLK-1: Dual-Leucine zipper Kinase; DMSO: dimethyl sulfoxide; DRG: dorsal root ganglion; FOS: Fos proto-oncogene, AP-1 transcription factor subunit; GABA: gamma-aminobutyric acid; GFP: green fluorescent protein; HDA-3: Histone DeAcetylase; IP3: inositol trisphosphate; ITR-1: Inositol Triphosphate Receptor; KLF-2: Kruppel-Like Factor (zinc finger protein) 2; LGG-1: LC3, GABARAP and GATE-16 family; MAK-2: MAP kinase Activated protein Kinase; MAP kinase: mitogen-activated protein kinase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MKK-4: mitogen activated protein kinase kinase 4; MTOR: mechanistic target of rapamycin kinase; NGM: nematode growth medium; NICD: Notch intracellular domain; NOTCH: notch receptor; PLM: posterior lateral microtubule; PMK-3: P38 Map kinase family; PNS: peripheral nervous system; SCG10: superior cervical ganglion protein 10; SCI: spinal cord injury; UNC-51: UNCoordinated 51; ULK1: unc-51 like autophagy activating kinase 1; wnd: wallenda.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581PMC
http://dx.doi.org/10.1080/15548627.2020.1713645DOI Listing

Publication Analysis

Top Keywords

axon regeneration
36
axon
12
autophagy
12
axon injury
12
autophagy activation
12
map kinase
12
protein kinase
12
kinase
10
regeneration
9
response axon
8

Similar Publications

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Nitric Oxide-Releasing Mesoporous Hollow Cerium Oxide Nanozyme-Based Hydrogel Synergizes with Neural Stem Cell for Spinal Cord Injury Repair.

ACS Nano

December 2024

Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO) nanospheres, we constructed an injectable composite hydrogel (AhCeO-Gel) with microenvironment modulation capability. AhCeO-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs.

View Article and Find Full Text PDF

Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies.

CNS Neurosci Ther

December 2024

Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China.

Article Synopsis
  • Spinal cord injury (SCI) is a major neurological disorder causing serious motor, sensory, and autonomic issues, primarily due to poor axon regeneration and remyelination.
  • Recent research highlights new therapeutic strategies that target key molecules and pathways to enhance myelin repair in SCI, using both lab and animal studies.
  • The review emphasizes the challenges in applying these findings to clinical settings, focusing on safety and delivery methods, while positing targeted remyelination therapies as a hopeful treatment approach for SCI.
View Article and Find Full Text PDF

Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors.

View Article and Find Full Text PDF

β-Asarone regulates microglia polarization to alleviate TBI-induced nerve damage via Fas/FasL signaling axis.

Hum Cell

December 2024

Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China.

Acute injury and secondary injury caused by traumatic brain injury (TBI) seriously threaten the health of patients. The purpose of this study was to investigate the role of β-Asarone in TBI-induced neuroinflammation and injury. In this work, the effects of β-Asarone on nerve injury and neuronal apoptosis were investigated in mice with TBI by controlled cortical impingement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!