The regio- (and stereo-)selectivity and specific activity of cytochrome P450s are determined by the accessibility of potential sites of metabolism (SOMs) of the bound substrate relative to the heme, and the activation barrier of the regioselective oxidation reaction(s). The accessibility of potential SOMs depends on the relative binding free energy (ΔΔG ) of the catalytically active substrate-binding poses, and the probability of the substrate to adopt a transition-state geometry. An established experimental method to measure activation energies of enzymatic reactions is the analysis of reaction rate constants at different temperatures and the construction of Arrhenius plots. This is a challenge for multistep P450-catalyzed processes that involve redox partners. We introduce a modified Arrhenius approach to overcome the limitations in studying P450 selectivity, which can be applied in multiproduct enzyme catalysis. Our approach gives combined information on relative activation energies, ΔΔG values, and collision entropies, yielding direct insight into the basis of selectivity in substrate conversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318578 | PMC |
http://dx.doi.org/10.1002/cbic.201900751 | DOI Listing |
Materials (Basel)
December 2024
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
In response to the increasingly strict performance requirements of large molds, a novel Cr-Mo-V hot-work die steel has been developed. In order to study the high-temperature hot deformation behavior and plasticity of the novel steel, hot compression tests were conducted on the Gleeble-1500D thermal simulation testing machine at a deformation temperature of 950~1200 °C and a strain rate of 0.001~5 s.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.
View Article and Find Full Text PDFChem Mater
December 2024
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Solid polymer electrolytes have yet to achieve the desired ionic conductivity (>1 mS/cm) near room temperature required for many applications. This target implies the need to reduce the effective energy barriers for ion transport in polymer electrolytes to around 20 kJ/mol. In this work, we combine information extracted from existing experimental results with theoretical calculations to provide insights into ion transport in single-ion conductors (SICs) with a focus on lithium ion SICs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China. Electronic address:
Traditional homogeneous Fenton systems face limitations, including a narrow pH range, potential secondary pollution, and poor repeatability. In this study, these bottlenecks in tetracycline wastewater treatment were addressed with using carbonized porous polyethyleneimine-grafted lignin microspheres (PLMs) supported Fe-loading catalysts (PLMs/Fe-C). An optimized PLMs/Fe-C catalyst under specific conditions (carbonization temperature: 350 °C, PLMs: Fe = 1:1, and alkali lignin: PEI = 1:4) was developed, which proved to be an efficient Fenton-like catalyst for tetracycline (TC) degradation.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
Rate coefficients for the reaction of CH with CHO were measured for the first time over the temperature range of 37-603 K, with the CH radicals produced by pulsed laser photolysis and detected by CH radical chemiluminescence following their reaction with O. The low temperature measurements (≤93 K) relevant to the interstellar medium were made within a Laval nozzle gas expansion, while higher temperature measurements (≥308 K) were made within a temperature controlled reaction cell. The rate coefficients display a negative temperature dependence below 300 K, reaching (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!