A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Calcium Deficiency in Diet Decreases the Magnesium Content in Bone and Affects Femur Physicochemical Properties in Growing Rats. | LitMetric

Calcium Deficiency in Diet Decreases the Magnesium Content in Bone and Affects Femur Physicochemical Properties in Growing Rats.

Biol Trace Elem Res

Departamento de Nanotecnología, Centro de Física Aplica y Tecnología Avanzada, Universidad Nacional Autónoma de México campus Juriquilla, 76230, Querétaro, México.

Published: September 2020

This study evaluates the effect of three calcium levels in the diet (normal, moderate, and severe calcium depletion) on bone metabolism of male Wistar rats during their growth period. Bone mineral density (BMD) and femur length were determined in vivo during the growth stage using a single X-ray transmission system. The apparent calcium absorption was calculated in the rat adolescent and adulthood stages. At the end of the experiment, calcium concentrations in serum and urine were analyzed. The bones were evaluated postmortem to corroborate in vivo analyses. Microstructural properties of cortical and trabecular tissues of femurs bones were assessed using scanning electron microscopy. Bone mineral contents (Mg, Ca, P, and K) were quantified by inductively coupled plasma. Severe calcium depletion in the diets in the development stage affects the bone quality parameters such as bone mineral density and mineral content. Moreover, it was found thinner cortical and trabecular bone areas. Additionally, it was found that severe calcium depletion increased the apparent absorption of calcium as a defense mechanism, but with the decrease of the BMD peak, and the thickness of cortical bone as well as trabecular bone porosity. The severe calcium depletion increased the efficiency of apparent absorption calcium as a defense mechanism, but, even so, decreases the BMD peak as well as the thickness of cortical bone and trabecular bone porosity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-019-01989-9DOI Listing

Publication Analysis

Top Keywords

severe calcium
16
calcium depletion
16
bone mineral
12
trabecular bone
12
bone
11
calcium
10
mineral density
8
cortical trabecular
8
depletion increased
8
apparent absorption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!