Chromosomal DNA fiber replication was investigated in the shoot meristem of mustard plants during the morphogenetic transition from the leaf-forming (vegetative) to the flower-forming (evoked) condition. The replicon size, determined using the modal class, was 15 micron in the vegetative meristem and shifted to 7.5 micron in the evoked meristem. The average fork rate was 1.05 micron.h-1 in the vegetative meristem and only slightly increased to 1.55 micron.h-1 during the morphogenetic switch. Replicon activation was asynchronous but the pattern of activation of replicons was the same in both kinds of meristems. Thus the shortening of the S phase at the floral transition in mustard was essentially achieved by an increase of the number of replicon origins per unit length of DNA. These results are similar to those obtained in amphibian and Drosophila embryogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-4827(88)90283-2DOI Listing

Publication Analysis

Top Keywords

dna fiber
8
fiber replication
8
morphogenetic switch
8
vegetative meristem
8
replication morphogenetic
4
switch shoot
4
shoot meristematic
4
meristematic cells
4
cells higher
4
higher plant
4

Similar Publications

A responsive cocktail nano-strategy breaking the immune excluded state enhances immunotherapy for triple negative breast cancer.

Nanoscale

January 2025

Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.

The exclusion of immune cells from the tumor can limit the effectiveness of immunotherapy in triple negative breast cancer (TNBC). The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway plays a crucial role in priming adaptive anti-tumor immunity through the production of type I interferons (IFNs), facilitating the maturation of dendritic cells (DCs) and the function of T cells. Although the increased expression of programmed death-ligand 1 (PD-L1) upon STING activation is favorable for amplifying the efficacy of immune checkpoint inhibitors (ICIs) and realizing combination therapy, the penetration barrier remains a major obstacle.

View Article and Find Full Text PDF

Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies.

View Article and Find Full Text PDF

Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .

View Article and Find Full Text PDF

Mapping mitochondrial morphology and function: COX-SBFSEM reveals patterns in mitochondrial disease.

Commun Biol

January 2025

Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.

Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies.

View Article and Find Full Text PDF

Poplar transformation with variable explant sources to maximize transformation efficiency.

Sci Rep

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!