Colorectal cancer (CRC) is the second deadliest cancer in the US due to its propensity to metastasize. Stromal cells and especially cancer-associated fibroblasts (CAF) play a critical biophysical role in cancer progression, but the precise pro-metastatic mechanisms are not clear. Activin A, a TGF-β family member, is a strong pro-metastatic cytokine in the context of CRC. Here, we assessed the link between biophysical forces and pro-metastatic signaling by testing the hypothesis that CAF-generated mechanical forces lead to activin A release and associated downstream effects. Consistent with our hypothesis, we first determined that stromal activin A secretion increased with increasing substrate stiffness. Then we found that stromally-secreted activin A induced ligand-dependent CRC epithelial cell migration and epithelial to mesenchymal transition (EMT). In addition, serum activin A levels are significantly increased in metastatic (stage IV) CRC patients (1.558 ng/ml versus 0.4179 ng/ml, p < 0.05). We propose that increased tumor microenvironment stiffness leads to stromal cell-mediated TGF-β family signaling relying on the induction and utilization of activin A signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952350PMC
http://dx.doi.org/10.1038/s41598-019-55687-6DOI Listing

Publication Analysis

Top Keywords

activin
6
cancer
5
increased stiffness
4
stiffness tumor
4
tumor microenvironment
4
microenvironment colon
4
colon cancer
4
cancer stimulates
4
stimulates cancer
4
cancer associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!