Introduction: Hypertrophic cardiomyopathy (HCM) is a heart disorder caused by autosomal dominant alterations affecting both sarcomeric genes and other nonsarcomeric loci in a minority of cases. However, in some patients, the occurrence of the causal pathogenic variant or variants in homozygosity, compound heterozygosity, or double heterozygosity has also been described. Most of the HCM pathogenic variants are missense and unique, but truncating mutations of the MYBPC3 gene have been reported as founder pathogenic variants in populations from Finland, France, Japan, Iceland, Italy, and the Netherlands.
Objectives: This study aimed to assess the genetic background of HCM in a cohort of Polish patients.
Patients And Methods: Twenty‑nine Polish patients were analyzed by a next generation sequencing panel including 404 cardiovascular genes.
Results: Pathogenic variants were found in 41% of the patients, with ultra‑ rare MYBPC3 c.2541C>G (p.Tyr847Ter) mutation standing for a variant hotspot and correlating with a lower age at HCM diagnosis. Among the nonsarcomeric genes, the CSRP3 mutation was found in a single case carrying the novel c.364C>T (p.Arg122Ter) variant in homozygosity. With this finding, the total number of known HCM cases with human CSRP3 knockout cases has reached 3.
Conclusions: This report expands the mutational spectrum and the inheritance pattern of HCM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.20452/pamw.15130 | DOI Listing |
Fam Cancer
January 2025
Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
Movement Disorders Clinic, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Biotechnol Bioeng
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.
N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.
View Article and Find Full Text PDFBioData Min
January 2025
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
Background: The mechanistic pathways that give rise to the extreme symptoms exhibited by rare disease patients are complex, heterogeneous, and difficult to discern. Understanding these mechanisms is critical for developing treatments that address the underlying causes of diseases rather than merely the presenting symptoms. Moreover, the same dysfunctional series of interrelated symptoms implicated in rare recessive diseases may also lead to milder and potentially preventable symptoms in carriers in the general population.
View Article and Find Full Text PDFActa Neurol Belg
January 2025
Department of Pediatrics, Neurology Unit, University of Health Sciences, Ankara Etlik City Hospital, Ankara, Turkey.
Introduction: Zellweger spectrum disorder (ZSD) refers to a group of autosomal recessive genetic disorders that affect multiple organ systems and are predominantly caused by pathogenic variants in PEX genes. ZSD present a wide clinical spectrum, ranging from the most severe form, Zellweger syndrome, to the mildest form, Heimler syndrome.
Case Report: A 14-month-old male patient was brought to our clinic with recent-onset ocular tremors and unsteady gait.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!