Here, we report the draft genome sequences of the green sulfur bacterium strains GrTcv12 and PhvTcv-s14, isolated from the chemocline zone from meromictic Lake Trekhtzvetnoe, separated from the White Sea, in Russia. This is the first report showing the presence of plasmids containing antiphage systems in the sp. genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952649PMC
http://dx.doi.org/10.1128/MRA.01172-19DOI Listing

Publication Analysis

Top Keywords

genome sequences
8
sequences green-colored
4
green-colored chlorobium
4
chlorobium phaeovibrioides
4
phaeovibrioides strain
4
strain plasmids
4
plasmids closely
4
closely plasmid-free
4
plasmid-free brown-colored
4
brown-colored strain
4

Similar Publications

Mining Silent Biosynthetic Gene Clusters for Natural Products in Filamentous Fungi.

Chem Biodivers

January 2025

Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.

Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.

View Article and Find Full Text PDF

Macrolide resistance due to (55).

Microbiol Spectr

January 2025

Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.

Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .

View Article and Find Full Text PDF

High-quality draft genomes of six subspecies strains from Cambodian poultry marketplaces were sequenced. The strains were identified as Corvallis-, Monschaui-, and Kentucky-serovars. The fluoroquinolone resistance gene, was found in three strains in different Cambodian provinces.

View Article and Find Full Text PDF

Complete genome sequence of bacteriophage Godfather isolated from .

Microbiol Resour Announc

January 2025

Department of Biological Sciences, Tarleton State University, Stephenville, Texas, USA.

Microbacteriophage Godfather was collected from a soil sample in Stephenville, Texas. The 17,452-bp double-stranded genome contains 24 protein-coding genes. The genome shares >99% nucleotide sequence identity with cluster EE microbacteriophages Scamander, Danno, Kojax4, and Burgy.

View Article and Find Full Text PDF

MultiTax-human: an extensive and high-resolution human-related full-length 16S rRNA reference database and taxonomy.

Microbiol Spectr

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Considering that the human microbiota plays a critical role in health and disease, an accurate and high-resolution taxonomic classification is thus essential for meaningful microbiome analysis. In this study, we developed an automatic system, named MultiTax pipeline, for generating taxonomy from full-length 16S rRNA sequences using the Genome Taxonomy Database and other existing reference databases. We first constructed the MultiTax-human database, a high-resolution resource specifically designed for human microbiome research and clinical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!