Polycomb-group (PcG) proteins are evolutionarily conserved epigenetic regulators whose primary function is to maintain the transcriptional repression of target genes. Recruitment of PcG proteins to target genes requires the presence of one or more Polycomb Response Elements (PREs). The functions or necessity for more than one PRE at a gene are not clear and individual PREs at some loci may have distinct regulatory roles. Various combinations of sequence-specific DNA-binding proteins are present at a given PRE, but only Pleiohomeotic (Pho) is present at all strong PREs. The () locus has two PREs, a proximal PRE1 and a distal PRE2. During early embryonic development, Pho binds to PRE1 ∼30-min prior to stable binding to PRE2. This observation indicated a possible dependence of PRE2 on PRE1 for PcG recruitment; however, we find here that PRE2 recruits PcG proteins and maintains transcriptional repression independently of Pho binding to PRE1. Pho-like (Phol) is partially redundant with Pho during larval development and binds to the same DNA sequences Although binding of Pho to PRE1 is dependent on the presence of consensus Pho-Phol-binding sites, Phol binding is less so and appears to play a minimal role in recruiting other PcG proteins to Another PRE-binding protein, Sp1/Kruppel-like factor, is dependent on the presence of Pho for PRE1 binding. Further, we show that, in addition to silencing gene expression, PcG proteins dampen transcription of an active gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054010 | PMC |
http://dx.doi.org/10.1534/genetics.119.302981 | DOI Listing |
Cancer Med
January 2025
Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon.
Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.
View Article and Find Full Text PDFVision Res
December 2024
Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India. Electronic address:
CYP1B1 is the most common gene implicated in primary congenital glaucoma (PCG) - the most common form of childhood glaucoma. How CYP1B1 mutations cause PCG is not known. Understanding the mechanism of PCG caused by CYP1B1 mutations is crucial for disease management, therapeutics development, and potential prevention.
View Article and Find Full Text PDFJ Mol Evol
December 2024
Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
CNS Neurosci Ther
November 2024
School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
Aim: Cerebral ischemic stroke (IS) is one of the leading causes of morbidity and mortality globally. However, the mechanisms underlying IS injury remain poorly understood. Ring finger protein 2 (RNF2), the member of the polycomb family (PcG), has been implicated in diverse biological and pathological conditions.
View Article and Find Full Text PDFMol Med
November 2024
Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
Background: Polycomb proteins are conventionally known as global repressors in cell fate determination. However, recent observations have shown their involvement in transcriptional activation, the mechanisms of which need further investigation.
Methods: Herein, multiple data from ChIP-seq, RNA-seq and HiChIP before or after RYBP depletion in embryonic stem cell (ESC), epidermal progenitor (EPC) and mesodermal cell (MEC) were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!