N-methyl-d-aspartate receptors (NMDARs), a subset of ligand-gated ionotropic glutamate receptors, are critical for learning, memory, and neuronal development. However, when NMDAR subunits are mutated, a host of neuropathological conditions can occur, including epilepsy. Recently, genetic variation within the GRIN2D gene, which encodes the GluN2D subunit of the NMDAR, has been associated with a set of early-onset neurological diseases, notably developmental and epileptic encephalopathy (DEE). Importantly, patients with GRIN2D variants are largely refractory to conventional anti-epileptic drug (AED) treatment, highlighting the need to further understand the distinctive characteristics of GluN2D in neurological and pathological functions. In this review, we first summarize GluN2D's unique spatial and temporal expression patterns, electrophysiological profiles, and contributions to both pre- and postsynaptic signaling. Next, we review thirteen unique case studies from DEE patients harboring ten different causal GRIN2D variants. These patients are highly heterogenous, manifesting multiple seizure types, electroencephalographic recordings, and neurological and developmental outcomes. Lastly, this review concludes by highlighting the difficulty in treating patients with DEE-associated GRIN2D variants, and stresses the need for selective therapeutic agents delivered within a precise time window.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035963 | PMC |
http://dx.doi.org/10.1016/j.ejpn.2019.12.007 | DOI Listing |
medRxiv
November 2024
RTI International, Research Triangle Park, NC.
Hum Mol Genet
November 2024
Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1133 John Freeman Blvd, Houston, TX 77030, United States.
Genetic variants in the genes GRIN1, GRIN2A, GRIN2B, and GRIN2D, which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic and neurodevelopmental disorders, including early onset epilepsy, developmental and epileptic encephalopathy, intellectual disability, and autism spectrum disorders. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects of missense variants are therefore crucial for therapeutic applications.
View Article and Find Full Text PDFGenetic variants in genes , , , and , which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic diseases. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects are therefore crucial for accurate diagnosis and therapeutic applications.
View Article and Find Full Text PDFEur Rev Med Pharmacol Sci
December 2023
MAGISNAT, Atlanta Tech Park, Peachtree Corners, GA, USA.
Objective: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by an intense fear of gaining weight, a relentless pursuit of thinness, and a distorted body image. Recent research highlights the substantial contribution of genetics to AN's etiology, with genes like BDNF, SLC6A4, and DRD2 implicated. However, a comprehensive genetic test for AN diagnosis is lacking.
View Article and Find Full Text PDFGenome Med
October 2023
Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, V50.2M, Lübeck, 23562, Germany.
Background: Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!