Objective: Fasting results in major metabolic changes including a switch from glycogenolysis to gluconeogenesis to maintain glucose homeostasis. However, the relationship between the length of fasting and the relative contribution of gluconeogenic substrates remains unclear. We investigated the relative contribution of glycogen, lactate, and glycerol in glucose production of male C57BL/6 J-albino mice after 6, 12, and 18 h of fasting.
Methods: We used non-perturbative infusions of C lactate, C glycerol, and C glucose combined with liquid chromatography mass spectrometry and metabolic flux analysis to study the contribution of substrates in gluconeogenesis (GNG).
Results: During infusion studies, both lactate and glycerol significantly label about 60% and 30-50% glucose carbon, respectively, but glucose labels much more lactate (∼90%) than glycerol carbon (∼10%). Our analyses indicate that lactate, but not glycerol is largely recycled during all fasting periods such that lactate is the largest direct contributor to GNG via the Cori cycle but a minor source of new glucose carbon (overall contribution). In contrast, glycerol is not only a significant direct contributor to GNG but also the largest overall contributor to GNG regardless of fasting length. Prolonged fasting decreases both the whole body turnover rate of glucose and lactate but increases that of glycerol, indicating that the usage of glycerol in GNG become more significant with longer fasting.
Conclusion: Collectively, these findings suggest that glycerol is the dominant overall contributor of net glucose carbon in GNG during both short and prolonged fasting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881678 | PMC |
http://dx.doi.org/10.1016/j.molmet.2019.11.005 | DOI Listing |
Cytotechnology
April 2025
Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI.
View Article and Find Full Text PDFPlants (Basel)
January 2025
University of Belgrade-Faculty of Chemistry, Department of Analytical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
This study evaluates the efficiency of 20 Natural Deep Eutectic Solvents (NADES) formulations for extracting curcuminoids and other bioactive compounds from turmeric and emphasize their ability to preserve and enhance antioxidant, antimicrobial, antidiabetic, and skin depigmentation effects. The NADES formulations, prepared using choline chloride (ChCl) combined with sugars, carboxylic acids, glycerol, amino acids, urea, polyols, and betaine, were assessed for their extraction efficiency based on the total phenolic content and curcumin concentration. Fourier transform infrared spectroscopy was employed to characterize the synthesized NADES and confirm their chemical composition.
View Article and Find Full Text PDFMicroorganisms
January 2025
Life and Environmental Area, State University of Rio Grande do Sul, Encantado 95960-000, Brazil.
Wasted bread (WB) has been studied as an alternative ingredient for increasing the sustainable footprint in the beer production chain. There are gaps in the literature on the impact of WB on beer manufacturing. Thus, the objective was to evaluate the addition of WB as a replacement for wheat flakes in a craft beer.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA.
Purple corn pericarp, a processing waste stream, is an extremely rich source of phytochemicals. Optimal polyphenol extraction parameters were identified using response surface methodology (RSM) by combining a deep eutectic solvent (DES) and ultrasound-assisted extraction (UAE) method. After DES characterization, Plackett-Burman design was used to screen five explanatory variables, namely, time, Temp (temperature), water, Amp (amplitude), and S/L (solid-to-liquid ratio).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
The hydrogenation of bicarbonate, a byproduct of CO captured in alkaline solutions, into formic acid (FA) using glycerol (GLY) as a hydrogen source offers a promising carbon-negative strategy for reducing CO emissions. While Pd-based catalysts are effective in this reaction, they often require high temperatures, leading to low FA yield due to strong hydrogen adsorption on Pd surfaces. In this work, metal-organic framework derived N-doped carbon encapsulated CoNi alloy nanoparticles (CoNi@NC) were prepared, acid-leached, and employed as a support to modulate the electronic structure of Pd-based catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!