Estrogen plays substantial roles in pain modulation; however, studies concerning sex hormones and nociception often yield confusing results. The discrepancy could be a result of lack of consensus to regard estrogen as a variable when working with animal models; thus, the influence of hormones' fluctuations on nociception has continually been neglected. In the present study, we designed a novel hormone substitution model to aid us to evaluate the effects of estrogen's long-term alterations on ovariectomy (OVX)-induced mechanical hyperalgesia and the expression of estrogen receptors(ERs). OVX rats were implanted with slow-release estrogen pellets at differently arranged time points and doses, such that a gradual elevation or decrease of serum estrogen levels following a relatively stable period of estrogen replacement was achieved in rats. Our results demonstrated that gradual estrogen depletion rather than elevation following the stable period of estrogen substitution in OVX rats alleviated OVX-induced mechanical hyperalgesia in a dose-independent manner, and the opposite estrogen increase or decrease paradigms differently regulate the expression of spinal ERs. Specifically, in rats rendered to continuously increased serum estrogen, the early phase estrogen-induced anti-nociception effect in OVX rats was eliminated, which was accompanied by an over-activation of ERα and a strong depression of ERβ, while in the OVX rats subject to gradual decrease of estrogen replacement, both ERα and ERβ increased modestly compared with the OVX group. Thus, the present study demonstrated that estrogen increase or decrease modulate nociception differently through change of spinal ERs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953313PMC
http://dx.doi.org/10.1186/s13293-019-0271-5DOI Listing

Publication Analysis

Top Keywords

ovx rats
16
estrogen
13
ovx-induced mechanical
8
mechanical hyperalgesia
8
serum estrogen
8
stable period
8
period estrogen
8
estrogen replacement
8
estrogen increase
8
increase decrease
8

Similar Publications

Osteoporosis (OP) is a chronic inflammatory bone disease characterized by reduced bone structure and strength, leading to increased fracture risk. Effective therapies targeting both bone and cartilage are limited. This study compared the therapeutic effects of extracorporeal shockwave therapy (ESWT), bisphosphonate (Aclasta), and human Wharton jelly-derived mesenchymal stem cells (WJMSCs) in a rat model of OP.

View Article and Find Full Text PDF

Synthetic Studies on Vitamin D Derivatives with Diverse but Selective Biological Activities.

Chem Pharm Bull (Tokyo)

January 2025

Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.

Article Synopsis
  • A-ring modifications in 1α,25-dihydroxyvitamin D enhance its binding to the vitamin D receptor (VDR) and increase its stability in cells by resisting metabolism, leading to longer-lasting effects.
  • Various modified A-ring precursors synthesized from d-glucose showed specific biological activities with minimal calcemic side effects, including MART-10's potent antitumor effects in cancer models and AH-1's superior bone-forming properties in osteoporosis models compared to natural vitamin D.
  • Ongoing research includes developing a library of fluorinated vitamin D analogs with potential anti-inflammatory effects and therapeutic applications for conditions like psoriasis, alongside the creation of the VDR-silent analog KK-052, which selectively inhibits SREBP/SC
View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF
Article Synopsis
  • MZGW (Modified Zuo Gui Wan) combines traditional herbal treatment and red yeast rice, showing promise in treating osteoporosis (OP) through its effects on osteoclasts.
  • Research utilized both in vivo (OVX rat model) and in vitro (RANKL-induced osteoclasts) experiments to understand MZGW's mechanisms, particularly focusing on the SCFA-GPR41-p38MAPK signaling pathway.
  • Results indicated that the high-dose MZGW improved bone microstructure and inhibited osteoclast activity by changing gut flora metabolism and effectively regulating specific signaling pathways.
View Article and Find Full Text PDF

Osteoporosis is a systemic, progressive bone disease that causes metabolic disorders. Previous study identified the preventive effects of hydrolyzed egg yolk peptide (YPEP) on osteoporosis. However, the underlying antiosteoporosis mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!