Aeromonas salmonicida was isolated from ulcerations in common dab (Limanda limanda). An experiment was performed to pinpoint its role in ulceration development, considering the importance of the skin barrier and the pigmented and non-pigmented sides. The skin of dab was treated in three zones, one where scales and epidermis were removed, one where mucus was discarded and one non-treated zone. Fish were tagged to allow individual identification and challenged with A. salmonicida. Mortality and severity of the developing lesions were recorded for 21 days post-inoculation. Starting 12 days post-inoculation, mortality occurred gradually in challenged fish; however, no direct cause could be established. Both control fish and challenged fish developed ulcerations containing A. salmonicida. Sequencing of vapA gene revealed that isolates retrieved from both groups were distinct, suggesting the presence of A. salmonicida prior to the trial. Most ulcerations developed in zones where skin was removed, suggesting that abrasion might be a predisposing factor in ulceration development. Ulcerations were also observed at the insertion site of the tag, where exposed muscle tissue might have favoured the development of ulcerations. In conclusion, A. salmonicida seems to be involved in the development of skin ulcerations in dab, although the exact pathogenesis needs to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfd.13133 | DOI Listing |
Front Microbiol
December 2024
Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
Bacteria of the genus are widely distributed in water bodies around the world. Some species have been identified as human pathogens causing intestinal and a variety of extraintestinal infections. In Germany, information on diseases caused by is rare, because infections are not notifiable in Germany.
View Article and Find Full Text PDFFront Immunol
December 2024
Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
Introduction: Furunculosis, caused by the gram-negative bacterium subsp. , remains a significant threat to turbot () aquaculture. Identifying genetic backgrounds with enhanced disease resistance is critical for improving aquaculture health management, reducing antibiotic dependency, and mitigating economic losses.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
Aeromonas salmonicida belongs to the Aeromonas family, which could widely infect economic fish, causing diseases and huge economic losses. Recently, A. salmonicida was also detected in diseased Odontobutis potamophila.
View Article and Find Full Text PDFFood Res Int
November 2024
Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China. Electronic address:
Foodborne bacteria can pose a threat to the public health due to their spoilage and virulence potential, which can be regulated by quorum sensing (QS) system. In the study, we isolated a spoilage bacteria strain Aeromonas salmonicida GMT3 from refrigerated sturgeon. The complete genome of A.
View Article and Find Full Text PDFMicroorganisms
October 2024
Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt.
Although antibiotics are the main therapy for bacterial infections, the reports showed that the overuse (or misuse) of antibiotics will results in several problems such as the development of antibiotic-resistant strains, persistence of drug residues, and numerous environmental concerns. Therefore, finding antibiotic alternatives is considered of vital importance. Investigation of the antimicrobial properties of several plant substances and extracts is of great value to replace antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!