Carbazole based novel multifunctional agents has been rationally designed and synthesized as potential anti-Alzheimer agents. Multi-functional activity of these derivatives have been assessed by performing various in-vitro assays and these compounds appeared to be potent AChE inhibitors, Aβ aggregation inhibitors, anti-oxidant and neuroprotective agents. Among the entire series, MT-1 and MT-6 were most potent multifunctional agents which displayed effective and selective AChE inhibition, Aβ disaggregation, anti-oxidant and metal chelation action. Neuroprotective activity of MT-6 has been examined against HO induced toxicity in SHSY-5Y cells and they have shown effective neuroprotection. Additionally, MT-6 did not display any significant toxicity in SHSY-5Y cells, indicating its non-toxic nature. Molecular docking and MD simulation studies have been also performed to explore molecular level interaction with AChE and Aβ. Finally, MT-6 was evaluated against scopolamine induced dementia model of mice and this compound actively improved memory deficit and cognition impairment in scopolamine treated mice. Thus, novel carbazole derivative MT-6 has been explored as an effective and safe multifunctional agent against AD and this molecule may be used as a suitable lead for development of effective anti-Alzheimer agents in future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.103524DOI Listing

Publication Analysis

Top Keywords

novel carbazole
8
multifunctional agents
8
anti-alzheimer agents
8
toxicity shsy-5y
8
shsy-5y cells
8
effective
5
agents
5
mt-6
5
development novel
4
carbazole derivatives
4

Similar Publications

Charge transfer emission between π- and 4f-orbitals in a trivalent europium complex.

Commun Chem

January 2025

Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.

View Article and Find Full Text PDF

Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.

View Article and Find Full Text PDF

Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).

View Article and Find Full Text PDF

Efficient Photocatalytic Water Purification Through Novel Janus-Nanomicelles with Long-Lived Charge Separation Properties.

Small

January 2025

College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China.

Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz-PDI-PEG rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far.

View Article and Find Full Text PDF

Fluorescent Macrocyclic Arenes: Synthesis and Applications.

Angew Chem Int Ed Engl

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Fluorescent macrocyclic arenes have attracted increasing interest in macrocyclic and supramolecular chemistry due to their exceptional photophysical properties and versatile applications. Classical macrocyclic arenes modified with fluorescent groups at the upper or bottom rims have long provided valuable platforms across various fields. Recently, a large number of novel fluorescent macrocyclic arenes directly composed of polycyclic aromatic or heteroaromatic building blocks including naphthalene, anthracene, tetraphenylethene, pyrene, fluorene, carbazole, acridan, phenothiazine, coumarin, triphenylamine, benzothiadiazole and so on, have been reported, and they have shown specific fluorescent property, and also exhibited broad applications in molecular recognition, sensing, bioimaging and functional materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!