Targeting downstream subcellular YAP activity as a function of matrix stiffness with Verteporfin-encapsulated chitosan microsphere attenuates osteoarthritis.

Biomaterials

School of Basic Medical Sciences and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China. Electronic address:

Published: February 2020

AI Article Synopsis

Article Abstract

Changes in the stiffness of chondrocyte extracellular matrix (ECM) are involved in the pathological progression of osteoarthritis (OA). However, the downstream responses of cartilage ECM stiffness are still unclear. YAP (Yes-associated protein) has been extensively studied as a mechanotransducer, we thus hypothesized that by targeting the downstream molecule activity of ECM stiffness could maintain chondrocyte phenotype and prevent cartilage degeneration in OA. Here, we showed that human cartilage matrix stiffened during pathological progression of OA, and the chondrocyte YAP activity was associated with ECM stiffness. We then mimicked the physiological and pathological stiffness of human cartilage by using PDMS-based substrates, and found that YAP was activated in chondrocytes seeded on stiff substrate, gradually losing their phenotype. In addition, it was observed that YAP was also significantly activated in mice OA development, and conditional knockout (cKO) of YAP in mice preserved collagen II expression and protected cartilage from degeneration in the OA model. Furthermore, intra-articular injection of YAP-selective inhibitor, Verteporfin, significantly maintained cartilage homeostasis in mice OA model. This study indicates that the application of mechanotransducer-targeted drugs could be a potential therapeutic approach for cartilage repair in OA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2019.119724DOI Listing

Publication Analysis

Top Keywords

ecm stiffness
12
targeting downstream
8
yap activity
8
pathological progression
8
cartilage degeneration
8
human cartilage
8
yap activated
8
cartilage
7
yap
6
stiffness
6

Similar Publications

Idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung disease have limited treatment options. Fibroblasts are key effector cells that sense matrix stiffness through conformation changes in mechanically sensitive receptors, leading to activation of downstream profibrotic pathways. Here we investigate the role of Piezo2, a mechanosensitive ion channel, in human and mouse lung fibrosis, and its function in myofibroblast differentiation in primary human lung fibroblasts (HLFs).

View Article and Find Full Text PDF

Objective: Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal interstitial lung disease, characterized by excessive extracellular matrix (ECM) secretion that disrupts normal alveolar structure. This study aims to explore the potential molecular mechanisms underlying the promotion of IPF development.

Methods: Firstly, we compared the transcriptome and single-cell sequencing data from lung tissue samples of patients with IPF and healthy individuals.

View Article and Find Full Text PDF

In this preliminary study, the long-term effects of calcium chloride crosslinking concentration on viability of 16HBE14o- human bronchial epithelial cells embedded in alginate-extracellular matrix (ECM) or alginate-methylcellulose-ECM hydrogels have been investigated. There is currently a limited understanding regarding the effects of crosslinking solution concentration on lung epithelial cells embedded in hydrogel. Furthermore, the effects of calcium chloride concentration in crosslinking solutions on other cell types have not been reported regarding whether the addition of viscosity and stiffness tuning agents such as methylcellulose will alter the responses of cells to changes in calcium chloride concentration in crosslinking solutions.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) exhibiting high stiffness and fast stress relaxation. In this work, gelatin-based viscoelastic hydrogels were developed to mimic the compositions, stiffness, and fast stress relaxation of PDAC tissues. The hydrogels were cross-linked by gelatin-norbornene-boronic acid (GelNB-BA), thiolated macromers, and a 1,2-diol-containing linear synthetic polymer PHD.

View Article and Find Full Text PDF

Many mammalian cells, including endothelial cells and fibroblasts, align and elongate along the orientation of extracellular matrix (ECM) fibers in a gel when cultured . During cell elongation, clusters of focal adhesions (FAs) form near the poles of the elongating cells. FAs are mechanosensitive clusters of adhesions that grow under mechanical tension exerted by the cells' pulling on the ECM and shrink when the tension is released.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!