A benchmark of optimally folded protein structures using integer programming and the 3D-HP-SC model.

Comput Biol Chem

Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil. Electronic address:

Published: February 2020

The Protein Structure Prediction (PSP) problem comprises, among other issues, forecasting the three-dimensional native structure of proteins using only their primary structure information. Most computational studies in this area use synthetic data instead of real biological data. However, the closer to the real-world, the more the impact of results and their applicability. This work presents 17 real protein sequences extracted from the Protein Data Bank for a benchmark to the PSP problem using the tri-dimensional Hydrophobic-Polar with Side-Chains model (3D-HP-SC). The native structure of these proteins was found by maximizing the number of hydrophobic contacts between the side-chains of amino acids. The problem was treated as an optimization problem and solved by means of an Integer Programming approach. Although the method optimally solves the problem, the processing time has an exponential trend. Therefore, due to computational limitations, the method is a proof-of-concept and it is not applicable to large sequences. For unknown sequences, an upper bound of the number of hydrophobic contacts (using this model) can be found, due to a linear relationship with the number of hydrophobic residues. The comparison between the predicted and the biological structures showed that the highest similarity between them was found with distance thresholds around 5.2-8.2 Å. Both the dataset and the programs developed will be freely available to foster further research in the area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2019.107192DOI Listing

Publication Analysis

Top Keywords

number hydrophobic
12
integer programming
8
psp problem
8
native structure
8
structure proteins
8
hydrophobic contacts
8
problem
5
benchmark optimally
4
optimally folded
4
protein
4

Similar Publications

Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.

View Article and Find Full Text PDF

When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance.

View Article and Find Full Text PDF

The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary.

View Article and Find Full Text PDF

Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil-Water Separation.

Polymers (Basel)

January 2025

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.

View Article and Find Full Text PDF

Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder.

Molecules

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!