Prenatal exposure to bisphenol a and its analogues (bisphenol F and S) and ultrasound parameters of fetal growth.

Chemosphere

Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Electronic address:

Published: May 2020

Background: Bisphenol A (BPA) has been shown to affect normal fetal growth, but human evidence on its analogues (BPF and BPS) is limited.

Object: To examine the associations between prenatal exposure to BPA and its analogues (BPF and BPS) and ultrasound parameters of fetal growth.

Methods: We measured urinary BPA, BPF, and BPS concentrations among 322 pregnant women during late pregnancy from a cohort study in Wuhan, China. Fetal biparietal diameter (BPD), head circumference (HC), femur length (FL), and abdominal circumference (AC) were measured by ultrasonography. The associations of maternal urinary BPA, BPF, and BPS concentrations with ultrasound parameters of fetal growth were estimated by multivariable adjusted models.

Results: We observed a gender difference in association of maternal urinary BPA concentrations and fetal HC (P for interaction = 0.003); each ln-unit increase in maternal urinary BPA concentration was associated with a mean decrease of 0.10 cm (95%CI: 0.18, -0.02) among boys and a mean increase of 0.14 cm (95%CI: 0.00, 0.28) among girls for HC. The associations were robust for urinary BPA concentrations modeled as tertiles or including urinary BPA, BPF, and BPS into mutual adjustment models. We did not observe robust associations between maternal urinary BPF and BPS concentrations and ultrasound parameters of fetal growth, though an inverse association with AC and a positive association with FL were estimated for maternal urinary BPF concentrations modeled as continuous variables.

Conclusions: Prenatal exposure to BPA but not BPF and BPS was sex-specifically associated with certain fetal growth parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.125805DOI Listing

Publication Analysis

Top Keywords

bpf bps
28
urinary bpa
24
fetal growth
20
maternal urinary
20
ultrasound parameters
16
parameters fetal
16
bpa bpf
16
prenatal exposure
12
bps concentrations
12
bpa
9

Similar Publications

In this study, the genotoxic effects of three different bisphenols (BPAF, BPF and BPS) and their mixture were assessed in the crab Carcinus aestuarii. Crabs were exposed for 7 and 14 days to 300 ng/L of BPA analogues, alone or as a mixture (100 ng/L for each compound). After 7- and 14-day exposure, gills and hepatopancreas were sampled from crabs to evaluate damage to DNA by quantifying the levels of DNA single- and double-strand breaks.

View Article and Find Full Text PDF

Repeated measurements of urinary bisphenol A and its analogues in relation to sperm DNA damage.

J Hazard Mater

January 2025

Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Electronic address:

Bisphenol A (BPA), a common endocrine disrupting chemical (EDC), has shown detrimental effects on sperm quality and function in experimental models. However, epidemiological evidence is inconsistent and also there exists a notable lack of data on its analogues, such as bisphenol F (BPF) and bisphenol S (BPS). To investigate the relationships between BPA, BPF and BPS exposures and sperm DNA damage, we conducted a cross-sectional study recruiting 474 Chinese men from an infertility clinic in Wuhan, China.

View Article and Find Full Text PDF

Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.

View Article and Find Full Text PDF

Comprehensive assessment of the safety of bisphenol A and its analogs based on multi-toxicity tests in vitro.

J Hazard Mater

December 2024

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have raised concerns due to their frequent environmental detection and unclear safety. Here, the cytotoxicity, endocrine disruption, neurotoxicity, aryl hydrocarbon receptor (AhR) activity, and genotoxicity of nine BPs and BPA were evaluated in three types of cell lines. Over half of the tested BPs exhibited greater cytotoxicity than BPA, with IC50 values showing a linear correlation with Log (R²=0.

View Article and Find Full Text PDF

Bisphenols can enter the body, where they have potential adverse effects on human health, via different routes such as inhalation, dermally or orally. They are known as endocrine disrupting chemicals that activate signaling pathways by mimicking the estrogen actions. In this study, we aimed to investigate effects of bisphenol A (BPA), and its analogues bisphenol F (BPF) and bisphenol S (BPS) on MCF-10A cells and their impact mechanisms on autophagy, apoptosis and reduced glutathion levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!