Cyclists and pedestrians account for a significant share of fatalities and serious injuries in the road transport system. In order to protect them, advanced driver assistance systems are being developed and introduced to the market, including autonomous emergency braking and steering systems (AEBSS) that autonomously perform braking or an evasive manoeuvre by steering in case of a pending collision, in order to avoid the collision or mitigate its severity. This study proposes a new prospective framework for quantifying safety benefit of AEBSS for the protection of cyclists and pedestrians in terms of saved lives and reduction in the number of people suffering serious injuries. The core of the framework is a novel application of Bayesian inference in such a way that prior information from counterfactual simulation is updated with new observations from real-world testing of a prototype AEBSS. As an illustration of the method, the framework is applied for safety benefit assessment of the AEBSS developed in the European Union (EU) project PROSPECT. In this application of the framework, counterfactual simulation results based on the German In-Depth Accident Study Pre-Crash Matrix (GIDAS-PCM) data were combined with results from real-world tests on proving grounds. The proposed framework gives a systematic way for the combination of results from different sources and can be considered for understanding the real-world benefit of new AEBSS. Additionally, the Bayesian modelling approach used in this paper has a great potential to be used in a wide range of other research studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2019.105352DOI Listing

Publication Analysis

Top Keywords

safety benefit
12
cyclists pedestrians
12
benefit assessment
8
autonomous emergency
8
emergency braking
8
braking steering
8
steering systems
8
protection cyclists
8
serious injuries
8
benefit aebss
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!