In this study, a novel multi-coated slow release compound fertilizer based on natural rubber (NR) was prepared and characterized. Firstly, NR was grafted with poly-acrylic acid by in-situ radical solution polymerization to synthesize poly-acrylic acid grafted natural rubber (NR-g-PAA), the reaction conditions were optimized to increase the water absorption properties of NR-g-PAA. Through a series of characterization and test, the structure, morphology, thermal properties and biodegradability of NR-g-PAA were determined. Subsequently, a multi-nutrient fertilizer core was fabricated with urea, KHPO, and attapulgite by pan granulation. Then the fertilizer core was coated by NR as the inner layer and NR-g-PAA as the outer layer. Meanwhile, the slow release behavior of the compound fertilizer in soil was also studied. Results showed that the maximum water absorbency of NR-g-PAA is 744.00 ± 14.38%. The release rate of N, P and K in 30 days for NR/NR-g-PAA coated fertilizer was about 54.35 ± 1.49%, 51.18 ± 2.15% and 44.37 ± 1.38%, respectively, showing that the nutrient element release can last for >30 days. Overall, the novel method introduced in this study can inform the development of NR based controlled release fertilizers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.01.051DOI Listing

Publication Analysis

Top Keywords

poly-acrylic acid
12
natural rubber
12
slow release
12
compound fertilizer
12
acid grafted
8
grafted natural
8
multi-coated slow
8
release compound
8
fertilizer core
8
release
6

Similar Publications

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

Lubricating Copolymer Brushes Achieving Excellent Antiadhesion and Antibacterial Performance through Hydration and Electrostatic Repulsion Effects.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China.

Interventional catheters have been widely applied in diagnostics, therapeutics, and other biomedical areas. The complications caused by catheter-related bacterial infection, venous thrombosis, and vascular abrasion have become the main reasons for the failure of interventional therapy. In this study, polyacrylamide/poly(acrylic acid) lubricating copolymer brushes were constructed on the surface of catheters and efficiently resisted the adhesion of blood components and bacteria through hydration and electrostatic repulsion effects.

View Article and Find Full Text PDF

Background: Thymoquinone (TQ) is found in the seeds of Nigella sativa. It has immunomodulatory, antibacterial, anti-inflammatory, antioxidant, astringent, antifungal, and antihistaminic properties, making it a highly valuable compound of interest. However, the use of it as a therapeutic drug is highly challenging because of its poor solubility, low bioavailability, and short-term stability.

View Article and Find Full Text PDF

Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).

View Article and Find Full Text PDF

Cellulose nanofiber/polyacrylic acid (CNF/PAA) hydrogel-based colorimetric sensor was fabricated for non-invasive screening of prostate cancer (PCa) via selective detection of sarcosine. The hydrogel was synthesized by photo-crosslinking of acrylic acid in the presence of CNF which acted as mechanical reinforcement and as color enhancer. The hydrogel exhibited a high aqueous absorption and high mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!