We present a method to use long-range CH coupling constants to derive the correct diastereoisomer from the molecular constitution of small molecules. A set of 79 J and J values collected from a single HSQMBC experiment on a sample of strychnine were used in the CASE-3D (computer-assisted 3D structure elucidation) protocol. In addition to the most commonly used J coupling constants, the subset of 32 J values alone showed an excellent degree of configuration selection. The study is mainly based on comparison of DFT-calculated J values with experimental ones, critical for the case of J . But the configuration selection also works well using J values predicted from a semi-empirical Karplus-based equation limited to H-C-C-C fragments. The robustness, shown using strychnine as a proof of concept, makes the J-based CASE-3D analysis a viable option for the application in fields such as peptide and carbohydrate research, organic synthesis, natural-product identification and analysis, as well as medicinal chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201915103 | DOI Listing |
J Comput Chem
January 2025
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.
The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
College of Engineering, Design, and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g.
View Article and Find Full Text PDFPNAS Nexus
January 2025
The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.
The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
Introduction: Male engagement in HIV testing during pregnancy significantly contributes towards the prevention of maternal seroconversion and paediatric HIV acquisition. Despite this, men especially the male partners of pregnant women have been consistently missing in the HIV prevention cascade. The factors accounting for sub-optimal levels in male engagement intersect but reasons for this are poorly understood.
View Article and Find Full Text PDFNat Commun
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France.
The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!