Coal fly ash consists of inhalable particulate matter with varying concentrations of neurotoxic metals. Children living near coal-fired power plants with coal fly ash storage facilities may be exposed to coal fly ash when it escapes as fugitive dust emissions into surrounding communities. Previous research on outdoor particulate matter air pollution of similar aerodynamic diameter (PM) suggests exposure may be associated with impaired cognitive control. The purpose of this research was to investigate sex-differences in the association between exposure to indoor PM and cognitive control among children (n = 221), ages 6-14 years, living near coal-fired power plants with fly ash storage facilities. In an ongoing community-based study, we measured indoor PM concentrations in participants' housing units and used performance measures from the BARS (Behavior Assessment and Research System) Continuous Performance Test (CPT) and Selective Attention Test (SAT) to assess neurotoxic effects on cognitive control. In adjusted negative binomial regression models, we found children living in housing units with higher indoor PM concentrations had a higher risk of commission errors on the CPT (incidence rate ratio (IRR) = 1.22 per interquartile range difference (IQR = 0.72 μg/m) in natural log-transformed PM concentrations; 95% CI = 1.01, 1.46) and SAT (IRR = 1.14; 95% CI = 1.01, 1.28). Furthermore, child sex modified the association between PM concentration and CPT commission errors. Among females, higher PM concentration was associated with higher risk of CPT commission errors (IRR = 1.39; 95% CI = 1.06, 1.82), but we found no association among males (IRR = 1.01; 95% CI = 0.79, 1.30). We found no association between PM concentrations and CPT or SAT response latency. Our results suggest females living near coal-fired plants with coal fly ash storage facilities may be more susceptible to impaired cognitive control associated with particulate matter exposure. Children living near coal-fired power plants with coal fly ash storage facilities who are exposed to particulate matter may have an increased risk of impulse control problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061070 | PMC |
http://dx.doi.org/10.1016/j.ntt.2020.106855 | DOI Listing |
Sci Rep
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, People's Republic of China.
Aiming at the problem that it is difficult to realize low-cost, high-performance and large-scale utilization of cementitious materials prepared from bulk solid wastes, this paper constructs a set of composite cementitious system based on alkaline activation of slag and fly ash (FA) by calcium carbide slag (CCS) and synergistic activation of sodium sulfate (NaSO) as a chemical dopant. The influence of factors such as solid waste type, mixing ratio, and NaSO content on the mechanical properties of composite cementitious systems was investigated by assessing compressive strength and analyzing microstructure using XRD, SEM-EDS, and FTIR. The test results indicate that CCS and NaSO exert significant influences on the strength of the composite cementitious system.
View Article and Find Full Text PDFWaste Manag
January 2025
Earth Sciences Department, University of Turin 10125 Turin, Italy.
This study investigates steam washing (SW) as an innovative pretreatment for municipal solid waste incineration fly ash (MSWI-FA) dechlorination, useful for a more effective stabilization in cementitious matrix. By using a detailed analytical approach (XRPD, XRF, ICP-MS, IRMS, SEM) and geochemical modeling, great focus is dedicated on pollutant leaching reduction and changes in ash physicochemical characteristics as a function of exposure time. The research demonstrates that SW removes up to 70 % cadmium, 17 % zinc, and 10 % lead, primarily by dissolving the soluble and carbonate/hydroxide fractions and promoting the reprecipitation and adsorption of heavy metals into more stable compounds.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, University of Botswana, Botswana Private bag UB, Gaborone, 00704, Botswana.
This study explores the synthesis of ZSM-5 zeolite using high-purity mesoporous silica exclusively derived from coal fly ash (CFA), eliminating the need for additional silica or alumina sources. Traditional ZSM-5 synthesis relies on costly and environmentally harmful pure chemicals, whereas this approach utilizes CFA, an industrial byproduct, addressing both cost and sustainability concerns. The synthesized ZSM-5 zeolite demonstrates exceptional purity, with a surface area of 455.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFEnviron Technol
January 2025
School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, People's Republic of China.
This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!