Habits are an important mechanism by which organisms can automate the control of behavior to alleviate cognitive demand. However, transitions to habitual control are risky because they lead to inflexible responding in the face of change. The question of how the brain controls transitions into habit is thus an intriguing one. How do we regulate when our repeated actions become automated? When is it advantageous or disadvantageous to release actions from cognitive control? Decades of research have identified a variety of methods for eliciting habitual responding in animal models. Progress has also been made to understand which brain areas and neural circuits control transitions into habit. Here, I discuss existing research on behavioral and neural circuit models for habit formation (with an emphasis on striatal circuits), and discuss strategies for combining information from different paradigms and levels of analysis to prompt further progress in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183881PMC
http://dx.doi.org/10.1002/jnr.24581DOI Listing

Publication Analysis

Top Keywords

behavioral neural
8
neural circuit
8
circuit models
8
models habit
8
habit formation
8
transitions habit
8
interfacing behavioral
4
habit
4
formation habits
4
habits mechanism
4

Similar Publications

VirDetect-AI: a residual and convolutional neural network-based metagenomic tool for eukaryotic viral protein identification.

Brief Bioinform

November 2024

Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.

This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection.

View Article and Find Full Text PDF

Transient chaos and periodic structures in a model of neuronal early afterdepolarization.

Chaos

January 2025

Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil.

The presence of chaos is ubiquitous in mathematical models of neuroscience. In experimental neural systems, chaos was convincingly demonstrated in membranes, neurons, and small networks. However, its effects on the brain have long been debated.

View Article and Find Full Text PDF

Spiking neural networks seek to emulate biological computation through interconnected artificial neuron and synapse devices. Spintronic neurons can leverage magnetization physics to mimic biological neuron functions, such as integration tied to magnetic domain wall (DW) propagation in a patterned nanotrack and firing tied to the resistance change of a magnetic tunnel junction (MTJ), captured in the domain wall-magnetic tunnel junction (DW-MTJ) device. Leaking, relaxation of a neuron when it is not under stimulation, is also predicted to be implemented based on DW drift as a DW relaxes to a low energy position, but it has not been well explored or demonstrated in device prototypes.

View Article and Find Full Text PDF

The mechanism of tumor budding (TB) in gastric adenocarcinoma (GAC) and its relationship with biological indicators and prognostic significance, remains unclear. In this study, we conducted a comprehensive analysis using whole-slide imaging to evaluate TB in 75 cases of GAC. Our findings revealed the risk factors associated with TB in GAC and their impact on patient prognosis.

View Article and Find Full Text PDF

Newborns are able to neurally discriminate between speech and nonspeech right after birth. To date it remains unknown whether this early speech discrimination and the underlying neural language network is associated with later language development. Preterm-born children are an interesting cohort to investigate this relationship, as previous studies have shown that preterm-born neonates exhibit alterations of speech processing and have a greater risk of later language deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!