The unique and adjustable properties of nanoparticles present enormous opportunities for their use as targeted drug delivery vectors. For example, nanoparticles functionalized with key surface ligands have been shown to pass through phospholipid bilayers without causing localised disruption. However, the further effects nanoparticles have on multi-component phospholipid bilayers remain unclear. We use coarse-grained computational models to investigate the structural properties of mixed phospholipid bilayers in the presence of ligand-functionalized nanoparticles. Model bilayers are composed of DPPC, DUPC, DFPC and cholesterol, and the nanoparticles are striped with a hydrophobic-ligand band and charged-ligand spherical caps. Our results show that nanoparticles aggregate near unsaturated phospholipid regions, phospholipid bilayer phase-separation is promoted in the presence of nanoparticles, and the heterogeneous components of a phospholipid bilayer play a significant role in the lateral organization of nanoparticles. This study highlights the need for considering the complexity of realistic phospholipid bilayers when optimising ligand functionalized nanoparticles for efficient drug delivery vectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr07106g | DOI Listing |
J Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Clinical Research Center of the Carolinas, Charleston, South Carolina, USA.
Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.
Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.
Langmuir
January 2025
R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan.
The adsorption behavior of an anionic surfactant, hydroxy alkane sulfonate with an alkyl chain length of 18 (C18HAS), from its hard water solution onto a mica surface and resulting lubrication properties were investigated. Because of the double chain-like chemical structure and aggregation behavior, C18HAS formed vesicles in hard water, which adsorbed onto a negatively charged mica surface via cation (Ca) bridging and then transformed into a bilayer film. The number of bilayers formed on the surface was evaluated by force curve measurements using an atomic force microscope (AFM), and the results showed a time-dependent increase of the number of adsorbed bilayers.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia.
Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!