Two cases with diagnosis of mesothelioma were referred to our laboratories with a request for tissue burden analysis in order to determine the presence of ferruginous bodies and uncoated elongated mineral particles in tissue samples. The individuals shared in common a past background of working in tile manufacturing facilities where industrial talc was used in the production of the products. Both were found to have ferruginous bodies in their lung tissues as well as elongated talc fibers/ribbons and elevated numbers of noncommercial amphiboles in their tissues. To our knowledge, this is the first report of tissue assessment for the presence of elongated mineral particles in individuals whose exposures to talc occurred were while working in the manufacture of tile products and who developed the fiber-related cancer - mesothelioma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01913123.2019.1709935DOI Listing

Publication Analysis

Top Keywords

elongated mineral
12
mineral particles
12
tissue burden
8
particles individuals
8
ferruginous bodies
8
tissue
4
burden evaluation
4
elongated
4
evaluation elongated
4
individuals mesothelioma
4

Similar Publications

The natural and laboratory-accelerated weathering of wood-plastic composites (WPCs) based on high-density polyethylene (HDPE) and polypropylene (PP) plastics was investigated in this study. Injection molded samples of WPCs with different loadings of wood fiber ranging from 0 to 36 wt.% of wood were subjected to laboratory-accelerated weathering and natural weathering.

View Article and Find Full Text PDF

Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.

View Article and Find Full Text PDF

Printed circuit boards represent an extraordinarily challenging fraction for the recycling of waste electric and electronic equipment. Due to the closely interlinked structure of the composing materials, the selective recycling of copper and closely associated precious metals from this composite material is compromised by losses during mechanical pre-processing. This problem could partially be overcome by a better understanding of the influence of particle size and shape on the recovery of finely comminuted and well-liberated metal particles during mechanical separation.

View Article and Find Full Text PDF

A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo.

Proc Natl Acad Sci U S A

January 2025

Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.

Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear.

View Article and Find Full Text PDF

The impact of ciliary length on the mechanical response of osteocytes to fluid shear stress.

Nitric Oxide

December 2024

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:

Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!