Synthesis and Rhodium(II)-Mediated Cascade Cyclopropanation/Rearrangement/Isomerization of Diazo 2,3,5-Trisubstituted Furans: The Construction of Penta-substituted Aromatic Compounds.

J Org Chem

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University, Changsha 410081 , China.

Published: February 2020

Ag(I)-catalyzed synthesis of diazo-trisubstituted furans starting from diazo-cumulated allenyl ketones has been investigated. The Rh(OAc)-catalyzed reaction of the diazo 2,3,5-trisubstituted furans provided penta-substituted aromatics via cascade intermolecular cyclopropanation/rearrangement/isomerization. The cyclopropanation on the furan ring/rearrangement of cyclopropane moiety has been reported. A reasonable mechanism is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.9b03093DOI Listing

Publication Analysis

Top Keywords

diazo 235-trisubstituted
8
235-trisubstituted furans
8
synthesis rhodiumii-mediated
4
rhodiumii-mediated cascade
4
cascade cyclopropanation/rearrangement/isomerization
4
cyclopropanation/rearrangement/isomerization diazo
4
furans construction
4
construction penta-substituted
4
penta-substituted aromatic
4
aromatic compounds
4

Similar Publications

Reaction of Donor-Acceptor α-Diazo Esters and ,-Dimethylformamide/γ-Lactams To Generate α-Amino-α-aroylethanoates.

Org Lett

January 2025

Advanced Research Institute and Department of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China.

Herein, we present a metal-free, concise, and efficient protocol for the intermolecular reaction of amides (lactams) with donor-acceptor α-diazo esters to afford the functionalized α-amino-α-aroylethanoates. -Methyl-2-pyrrolidone (NMP) and ,-dimethylformamide (DMF) are employed as both reagents and solvents, allowing for the incorporation of all units into the products. The reaction is processed by the ester group migration and compatible with a broad range of substrates up to 50 examples.

View Article and Find Full Text PDF

Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording diversified pyran-fused isoquinolines in moderate to good yields with broad functional group tolerance under mild reaction conditions.

View Article and Find Full Text PDF

Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds.

ACS Catal

January 2025

Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands.

The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored.

View Article and Find Full Text PDF

Late-Stage Diazoester Installation via Arylthianthrenium Salts.

Angew Chem Int Ed Engl

January 2025

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.

By leveraging the fast oxidative addition of arylthianthrenium salts (aryl-TT) to palladium(0), a regioselective diazoester installation has been developed. This approach enables the introduction of a diazo moiety to densely functionalized arenes at a late stage. The installed diazo group is amenable to facile further derivatization.

View Article and Find Full Text PDF

It is well established that the confinement of reactants to two dimensions influences their reactivity. However, such confinement is often dominated by charge transfer effects between the reactants and the confining walls, in particular if the walls are conductive. Also, the reactivity of carbenes on metal surfaces is significantly affected by the charge transfer between the carbene and the metal, rendering the carbene more nucleophilic or electrophilic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!