AI Article Synopsis

  • The study aimed to explore the roles of miR-141 and SOX11 in steroid-induced avascular necrosis of the femoral head (SANFH) and to see if miR-141 could target SOX11 to affect the growth of bone marrow mesenchymal stem cells (BMSC).
  • BMSC were sourced from Sprague Dawley rats and subjected to various assays, including flow cytometry to confirm their identity and transfection techniques to manipulate miR-141 and SOX11 levels for analysis.
  • Results showed miR-141 levels were significantly higher and SOX11 levels were lower in SANFH compared to controls, indicating a direct regulatory relationship between miR-141 and SOX11, where inhib

Article Abstract

Objective: To investigate whether miR-141 and the sex determination region of Y chromosome box 11 (SOX11) play roles in steroid-induced avascular necrosis of the femoral head (SANFH), and to explore whether miR-141 could target SOX11 to influence the proliferation of bone marrow mesenchymal stem cells (BMSC).

Methods: Bone marrow mesenchymal stem cells (BMSC) were isolated and cultured from 4-week-old Sprague Dawley rats. A flow cytometry assay was performed to identify BMSC. BMSC were divided into two groups: a control group and a dexamethasone (DEX) group. BMSC were transfected by miR-141 mimic, miR-141 inhibitor, and SOX11. Real-time polymerase chain reaction (PCR) assay was performed to investigate the mRNA expression of miR-141 and SOX11. The results were used to determine the effect of transfection and to verify the expression in each group and the association between miR-141 and SOX11. Luciferase reporter assay revealed the targeted binding site between miR-141 and the 3'-untranslated region of SOX11 mRNA. MTT assays were performed to investigate the proliferation of BMSC in the miR-141 mimic, miR-141 inhibitor, and SOX11 groups.

Result: The results of the flow cytometry assay suggested that cells were positive for CD29 and CD90 while negative for CD45. This meant that the isolated and cultured cells were not hematopoietic stem cells. In addition, cell transfection was successful based on the expression of miR-141 and SOX11. According to the results of real-time PCR assay, the mRNA expression of miR-141 in SANFH was upregulated (4.117 ± 0.042 vs 1 ± 0.027, P < 0.001), while SOX11 was downregulated (0.611 ± 0.055 vs 1 ± 0.027, P < 0.001) compared with the control group. Based on the results of the luciferase experiment, MiR-141 could directly target the expression of SOX11. Inhibition of miR-141 could upregulate the expression of SOX11 (2.623 ± 0.220 vs 1 ± 0.095, P < 0.001) according to the results of a real-time PCR assay. MiR-141 inhibited the proliferation of BMSC (0.618 ± 0.092 vs 1.004 ± 0.082, P < 0.001), while suppression of miR-141 increased the proliferation of BMSC (0.960 ± 0.095 vs 0.742 ± 0.091, P < 0.001). Furthermore, according to the results of the MTT assay, SOX11 promoted the proliferation of BMSC (1.064 ± 0.093 vs 0.747 ± 0.090, P < 0.001).

Conclusion: MiR-141 inhibited the proliferation of BMSC in SANFH by targeting SOX11. Inhibition of miR-141 upregulated the expression of SOX11 and promoted the proliferation of BMSC. MiR-141 and SOX11 could be new targets for investigating the mechanism of SANFH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031553PMC
http://dx.doi.org/10.1111/os.12603DOI Listing

Publication Analysis

Top Keywords

stem cells
16
bone marrow
12
marrow mesenchymal
12
mesenchymal stem
12
expression mir-141
12
mir-141 sox11
12
mir-141
11
sox11
9
proliferation bone
8
isolated cultured
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!