Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cantharidic acid (CA) is the hydrolysis product of the acid anhydride cantharidin, which is a natural toxin secreted by several species of blister beetles. Several studies have indicated that as an inhibitor of protein phosphatase 2 (PP2A), CA induces apoptosis in various human cancer cells. However, the effect of CA on human nasopharyngeal carcinoma (NPC) cells and the underlying pathways have not been addressed. In our current study, we tested the hypothesis that CA treatment reduces the viability of human NPC cells (HONE-1, NPC-39, and NPC-BM) by inducing apoptosis. Results indicated that CA markedly reduced cell viability, which was revealed by the upregulation of caspase activation in extrinsic and intrinsic apoptosis pathways as well as the upregulation of extracellular-signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase 1/2 (JNK1/2) pathways. Coadministration of a p38 inhibitor (SB203580) with CA abolished the activation of caspase proteins. These findings indicated that CA treatment leads to apoptosis in human NPC cells through the upregulation of caspase activation, mediated particularly by the p38 pathway. Hence, CA is a promising therapeutic agent for human NPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tox.22897 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!