The effects of Microcystis aeruginosa cells lysate containing microcystins on physiological and molecular responses in the nematode Caenorhabditis elegans.

Environ Toxicol

Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil.

Published: May 2020

Microcystins (MCs) are potent toxins produced by environmental cyanobacterial blooms. The present study evaluated the effects of a Microcystis aeruginosa cyanobacterial lysate containing 0.1, 1, and 10 μg L MC-LR equivalent in the C. elegans Bristol N2 wild-type and the effects caused by equivalent concentrations of a MC-LR standard. The lysate was prepared from a culture of toxic strain (RST9501) originated from the Patos Lagoon Estuary (RS, Brazil). The minimal concentration necessary to cause significant effects in C. elegans under exposure to M. aeruginosa lysate or to MC-LR standard were, respectively, 10 and 0.1 μg L MC-LR equivalent for growth and 10 and 1 μg L MC-LR equivalent for fertility. Reproduction (ie, brood size) was only affected by the exposure to 10 μg L MC-LR standard and was not affected by the lysate. The nematodes that were exposed to lysate containing 1 μg L MC-LR equivalent or MC-LR were also analyzed for pharyngeal pumping and gene expression using RT-qPCR. The worms' rhythmic contractions of the pharynx were similarly affected by the lysate containing 1 μg L of MC-LR equivalent and the MC-LR standard. The MC-LR standard caused down-regulation of genes related to growth (daf-16), fertility (spe-10), and biotransformation (gst-2). This is the first study to evaluate the effects of a toxic cyanobacterial lysate using the C. elegans model. This study suggests the organism as a potential biotest to evaluate toxicity of natural waters containing M. aeruginosa cells and to environmental risk assessment associated to cyanobacterial bloom events.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.22894DOI Listing

Publication Analysis

Top Keywords

μg l mc-lr
24
mc-lr equivalent
20
mc-lr standard
20
lysate μg l
12
mc-lr
11
effects microcystis
8
microcystis aeruginosa
8
aeruginosa cells
8
lysate
8
cyanobacterial lysate
8

Similar Publications

2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in () were investigated through physiological and nontargeted metabolomic assessments.

View Article and Find Full Text PDF

Alteration of intestinal microbiota-intestinal barrier interaction interferes with intestinal health after microcystin-LR exposure in Lithobates catesbeianus tadpoles.

Aquat Toxicol

January 2025

Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China. Electronic address:

There remains uncertainty regarding the influence of microcystin-leucine arginine (MC-LR) on amphibian intestinal health, specifically how MC-LR interferes with intestinal microbiota following exposure to environmental concentrations. In this study, Lithobates catesbeianus tadpoles were exposed to varying MC-LR concentrations (0, 0.5, and 2 µg/L) over a 30-day period.

View Article and Find Full Text PDF

A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ.

View Article and Find Full Text PDF

The MC-LR induced neuroinflammation and the disorders of neurotransmitter system in zebrafish (Danio rerio): Oxidative stress as a key.

Fish Shellfish Immunol

January 2025

College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China. Electronic address:

Microcystin-leucine-arginine (MC-LR) has been shown to induce neuroinflammation and disrupt neurotransmitter system. However, little is known about the mechanism of toxicity. In this study, male adult zebrafish (Danio rerio) were exposed to MC-LR at concentrations of 0, 0.

View Article and Find Full Text PDF

Comprehensive genomic and transcriptomic analyses of the anaerobic degradation of microcystin in Alcaligenes faecalis D04.

Ecotoxicol Environ Saf

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!