Contaminated clay soils pose problems to public health and the environment in several parts of the world. Very little is known about the transport of decontaminating agents used in remediation process under natural, undisturbed conditions. Nanomaterials, especially those made of nanoscale zero-valent iron (nZVI), have been most frequently used for remediation of contaminated soils because of their higher reactivity, lower toxicity, and lower cost than other metallic nanoparticles. Even though the nanoparticle size is smaller than soil pores, clogging may occur over time due to agglomeration of nanoparticles, which could reduce the soil's natural permeability and thereby cause filtration of the nanoparticles. The use of a stabilizer in the nanoparticles can modify the reactivity but improves their mobility in the soil system. Thus, the objective of this work was to evaluate the hydraulic conductivity of residual clay soil under the injection of different types and concentrations of nZVI with and without surfactant stabilizer (NANOFER 25, NANOFER 25S, and NANOFER STAR in powder at 1 g/L, 4 g/L, 7 g/L, and 10 g/L concentrations), and to model transport of these nZVI suspensions in this soil system. Undisturbed cylindrical soil samples collected from the field were used, and hydraulic conductivity tests were performed using a column apparatus. The results showed that the presence of the stabilizer in the nZVI influenced the nanoparticles' mobility. The nZVI concentrations of 1 and 4 g/L did not affect the natural soil hydraulic conductivity. However, higher concentrations reduced the hydraulic conductivity value, which retarded the migration of nZVI as reflected in the value of filtration parameter.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-07197-1DOI Listing

Publication Analysis

Top Keywords

hydraulic conductivity
20
nanoscale zero-valent
8
zero-valent iron
8
conductivity residual
8
filtration parameter
8
soil system
8
soil
7
nzvi
6
hydraulic
5
conductivity
5

Similar Publications

Association of handgrip strength with aortic stenosis among adults aged 60 years and older: evidence from the 157097 UK Biobank participants.

J Geriatr Cardiol

November 2024

Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.

Objective: To examine the association of handgrip strength with aortic stenosis incidence among adults aged 60 years and older.

Methods: We conducted a cohort study using the UK Biobank data to assess the relationship between handgrip strength and incident aortic stenosis in individuals aged 60 years and older. Handgrip strength was measured using a Jamar J00105 hydraulic hand dynamometer.

View Article and Find Full Text PDF

Evaluation of rheological properties of guar gum-based fracturing fluids enhanced with hydroxyl group bearing thermodynamic hydrate inhibitors.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India. Electronic address:

Naturally occurring gas clathrates are a significant methane resource-the primary component of natural gas, regarded as the cleanest hydrocarbon and a key feedstock for producing gray and blue hydrogen. Despite the global abundance of gas hydrate reserves, extraction via depressurization has yet to achieve commercially viable production rates. The primary limitation lies in the low permeability of hydrate-bearing sediments, where solid clathrates obstruct porous pathways, hindering dissociation and slowing gas recovery.

View Article and Find Full Text PDF

Digital upgrade of drainage detention devices for forced retention.

J Environ Manage

December 2024

Department of Infrastructure and Water Management, Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Ave Powstańców Warszawy 6, 35-959, Rzeszów, Poland. Electronic address:

Current urban challenges related to local urban flooding require effective preventive measures. This applies particularly to various methods of stormwater retention, including forced retention, and solutions that enable cooperation between small individual retention systems and drainage systems. Therefore, this study presents the results of research on the hydraulic efficiency of controllable systems, which combine the features of an on-site tank with the solutions of network tanks to increase the retention of stormwater in drainage systems.

View Article and Find Full Text PDF

The CRTS (China Railway Track System) II slab ballastless track is widely utilized in high-speed railway construction owing to its excellent structural integrity. However, its interfacial performance deteriorates under high-temperature conditions, leading to significant damage in structural details. Furthermore, the evolution of its performance under these conditions has not been comprehensively studied.

View Article and Find Full Text PDF

Lycium barbarum is an important economic crop in the arid region of Northwest China, and the regulation of irrigation and fertilisation is an important way to improve the quality and yield of Lycium barbarum. To explore the effects of water-fertiliser coupling on photosynthesis, quality and yield of Lycium barbarum under irrigation methods based on predicted crop evapotranspiration (ET), ET was calculated via reference evapotranspiration (ET) predicted on the basis of public weather forecasts, and the irrigation water volume was determined as a proportion of this ET. A field experiment was conducted via a completely randomised experimental design with five irrigation water volumes (W0 (100% ET), W1 (90% ET), W2 (80% ET), W3 (70% ET) and W4 (65% ET)) and three fertiliser application rates (high fertiliser (FH), medium fertiliser (FM) and low fertiliser (FL)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!