Influenza A virus (IAV) utilizes multiple strategies to confront or evade host type I interferon (IFN)-mediated antiviral responses in order to enhance its own propagation within the host. One such strategy is to induce the degradation of type I IFN receptor 1 (IFNAR1) by utilizing viral hemagglutinin (HA). However, the molecular mechanism behind this process is poorly understood. Here, we report that a cellular protein, poly(ADP-ribose) polymerase 1 (PARP1), plays a critical role in mediating IAV HA-induced degradation of IFNAR1. We identified PARP1 as an interacting partner for IAV HA through mass spectrometry analysis. This interaction was confirmed by coimmunoprecipitation analyses. Furthermore, confocal fluorescence microscopy showed altered localization of endogenous PARP1 upon transient IAV HA expression or during IAV infection. Knockdown or inhibition of PARP1 rescued IFNAR1 levels upon IAV infection or HA expression, exemplifying the importance of PARP1 for IAV-induced reduction of IFNAR1. Notably, PARP1 was crucial for the robust replication of IAV, which was associated with regulation of the type I IFN receptor signaling pathway. These results indicate that PARP1 promotes IAV replication by controlling viral HA-induced degradation of host type I IFN receptor. Altogether, these findings provide novel insight into interactions between influenza virus and the host innate immune response and reveal a new function for PARP1 during influenza virus infection. Influenza A virus (IAV) infections cause seasonal and pandemic influenza outbreaks, which pose a devastating global health concern. Despite the availability of antivirals against influenza, new IAV strains continue to persist by overcoming the therapeutics. Therefore, much emphasis in the field is placed on identifying new therapeutic targets that can more effectively control influenza. IAV utilizes several tactics to evade host innate immunity, which include the evasion of antiviral type I interferon (IFN) responses. Degradation of type I IFN receptor (IFNAR) is one known method of subversion, but the molecular mechanism for IFNAR downregulation during IAV infection remains unclear. Here, we have found that a host protein, poly(ADP-ribose) polymerase 1 (PARP1), facilitates IFNAR degradation and accelerates IAV replication. The findings reveal a novel cellular target for the potential development of antivirals against influenza, as well as expand our base of knowledge regarding interactions between influenza and the host innate immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081902 | PMC |
http://dx.doi.org/10.1128/JVI.01572-19 | DOI Listing |
Unlabelled: Zoonotic viruses are an omnipresent threat to global health. Influenza A virus (IAV) transmits between birds, livestock, and humans. Proviral host factors involved in the cross-species interface are well known.
View Article and Find Full Text PDFSince late 2021, a panzootic of highly pathogenic H5N1 avian influenza virus has driven significant morbidity and mortality in wild birds, domestic poultry, and mammals. In North America, infections in novel avian and mammalian species suggest the potential for changing ecology and establishment of new animal reservoirs. Outbreaks among domestic birds have persisted despite aggressive culling, necessitating a re-examination of how these outbreaks were sparked and maintained.
View Article and Find Full Text PDFArch Virol
January 2025
Department Experimental and Clinical Medicine, University of Florence, Florence, Italy.
The I38T substitution in the influenza virus polymerase-acidic (PA) subunit is a resistance marker of concern for treatment with the antiviral baloxavir marboxil (BXM). Thus, monitoring PA/I38T mutations is of clinical importance. Here, we developed three rapid and sensitive assays for the detection and monitoring of the PA/I38T mutation.
View Article and Find Full Text PDFArch Virol
January 2025
CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China.
To battle seasonal outbreaks of influenza B virus infection, which continue to pose a major threat to world health, new and improved vaccines are urgently needed. In this article, we discuss the current state of next-generation influenza B vaccine development, including both advancements and challenges. This review covers the shortcomings of existing influenza vaccines and stresses the need for more-effective and broadly protective vaccines and more-easily scalable manufacturing processes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
The seasonality and epidemiology of viral acute respiratory infections (ARIs) have changed since the coronavirus disease 2019 pandemic. However, molecular-based ARI surveillance has not been conducted in Japan. We developed a regional surveillance program to define the local epidemiology of ARIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!