Microscopy cell nuclei segmentation with enhanced U-Net.

BMC Bioinformatics

Hudongfeng Technology (Beijing) Co., Ltd., Sanjianfang South No.4, DREAM 2049 B05, Chaoyang District, Beijing, China.

Published: January 2020

Background: Cell nuclei segmentation is a fundamental task in microscopy image analysis, based on which multiple biological related analysis can be performed. Although deep learning (DL) based techniques have achieved state-of-the-art performances in image segmentation tasks, these methods are usually complex and require support of powerful computing resources. In addition, it is impractical to allocate advanced computing resources to each dark- or bright-field microscopy, which is widely employed in vast clinical institutions, considering the cost of medical exams. Thus, it is essential to develop accurate DL based segmentation algorithms working with resources-constraint computing.

Results: An enhanced, light-weighted U-Net (called U-Net+) with modified encoded branch is proposed to potentially work with low-resources computing. Through strictly controlled experiments, the average IOU and precision of U-Net+ predictions are confirmed to outperform other prevalent competing methods with 1.0% to 3.0% gain on the first stage test set of 2018 Kaggle Data Science Bowl cell nuclei segmentation contest with shorter inference time.

Conclusions: Our results preliminarily demonstrate the potential of proposed U-Net+ in correctly spotting microscopy cell nuclei with resources-constraint computing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950983PMC
http://dx.doi.org/10.1186/s12859-019-3332-1DOI Listing

Publication Analysis

Top Keywords

cell nuclei
16
nuclei segmentation
12
microscopy cell
8
computing resources
8
segmentation
5
microscopy
4
nuclei
4
segmentation enhanced
4
enhanced u-net
4
u-net background
4

Similar Publications

l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.

View Article and Find Full Text PDF

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops like rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as , the causative agent of rice blast disease, , responsible for head blight (FHB) in wheat, and , the source of Septoria tritici blotch (STB).

View Article and Find Full Text PDF

Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction.

Hum Mol Genet

January 2025

Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China.

Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis.

View Article and Find Full Text PDF

Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes.

Alzheimers Dement

January 2025

Center for Geriatric Medicine, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Introduction: Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear.

Methods: Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!