Dysregulation of the adipo-osteogenic differentiation balance of mesenchymal stem cells (MSCs), which are common progenitor cells of adipocytes and osteoblasts, has been associated with many pathophysiologic diseases, such as obesity, osteopenia, and osteoporosis. Growing evidence suggests that lipid metabolism is crucial for maintaining stem cell homeostasis and cell differentiation; however, the detailed underlying mechanisms are largely unknown. Here, we demonstrate that glucosylceramide (GlcCer) and its synthase, glucosylceramide synthase (GCS), are key determinants of MSC differentiation into adipocytes or osteoblasts. GCS expression was increased during adipogenesis and decreased during osteogenesis. Targeting GCS using RNA interference or a chemical inhibitor enhanced osteogenesis and inhibited adipogenesis by controlling the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). Treatment with GlcCer sufficiently rescued adipogenesis and inhibited osteogenesis in GCS knockdown MSCs. Mechanistically, GlcCer interacted directly with PPARγ through A/B domain and synergistically enhanced rosiglitazone-induced PPARγ activation without changing PPARγ expression, thereby treatment with exogenous GlcCer increased adipogenesis and inhibited osteogenesis. Animal studies demonstrated that inhibiting GCS reduced adipocyte formation in white adipose tissues under normal chow diet and high-fat diet feeding and accelerated bone repair in a calvarial defect model. Taken together, our findings identify a novel lipid metabolic regulator for the control of MSC differentiation and may have important therapeutic implications.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201901437RDOI Listing

Publication Analysis

Top Keywords

glucosylceramide synthase
8
adipo-osteogenic differentiation
8
adipocytes osteoblasts
8
msc differentiation
8
increased adipogenesis
8
adipogenesis inhibited
8
inhibited osteogenesis
8
differentiation
5
pparγ
5
glccer
5

Similar Publications

Inhibiting UGCG prevents PRV infection by decreasing lysosome-associated autophage.

Int J Biol Macromol

December 2024

School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China. Electronic address:

Glucosylceramide synthase (UGCG) is a key enzyme that catalyzes the initial glycosylation step in the biosynthesis of glycosphingolipids (GSLs) derived from glucosylceramide. UGCG is closely associated with various cellular processes, including the cell cycle, angiogenesis, multidrug resistance, and pathogen invasion. In this study, a short hairpin RNA (shRNA) library designed to target key genes involved in the sphingolipid metabolic pathway was utilized to elucidate their roles in Pseudorabies Virus (PRV).

View Article and Find Full Text PDF

Design, synthesis and antifungal activity of novel vanillin derivatives containing thiazole and acylhydrazone moieties.

Pest Manag Sci

December 2024

Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Institute of Pesticide Science, Northwest A&F University, Yangling, P. R. China.

Background: The potential application of vanillin as a fungicide has garnered significant attention in the agricultural product market and food industries. Consequently, a novel series of vanillin derivatives containing thiazole and hydrazone fragments were strategically designed, synthesized, and evaluated for their antifungal activity against six representative plant phytopathogenic fungi.

Results: In the in vitro antifungal assay, some title vanillin derivatives showed good antifungal activity against Botrytis cinerea, Fusarium solani, and Magnaporthe grisea.

View Article and Find Full Text PDF

Glucosylceramide synthase inhibitor ameliorates chronic inflammatory pain.

J Pharmacol Sci

December 2024

Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan. Electronic address:

Article Synopsis
  • - Gangliosides are important for functions in nerve cells, influencing processes like growth, communication, and degeneration.
  • - Research indicated that mice given gangliosides made from glucosylceramide experienced heightened sensitivity to touch, known as mechanical allodynia.
  • - The study found that using glucosylceramide inhibitors helped decrease this sensitivity during inflammation in mice, highlighting the potential of targeting gangliosides for pain relief.
View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) are a distinct subset of DCs involved in immune regulation and antiviral immune responses. Recent studies have elucidated the metabolic profile of pDCs and reported that perturbations in amino acid metabolism can modulate their immune functions. Glycolipid metabolism is suggested to be highly active in pDCs; however, its significance remains unclear.

View Article and Find Full Text PDF

Macroautophagy/autophagy-lysosome function promotes growth and survival of cancer cells, making them attractive targets for cancer therapy. One intriguing lysosomal target is PPT1 (palmitoyl-protein thioesterase 1). PPT1 inhibitors derived from chloroquine block autophagy, have significant antitumor activity in preclinical models and are being developed for clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!