Robotic vehicles capable of transition from aquatic to terrestrial locomotion face considerable challenges associated with propulsive efficiency and performance in each environment. Here we present a morphing amphibious robotic limb that combines the locomotor adaptations of sea turtles for swimming and tortoises for walking. The limb can transform between the streamlined morphology of a sea turtle flipper and the load-bearing geometry of a tortoise leg using a variable stiffness material coupled to a pneumatic actuator system. Herein, we describe the fabrication and characterization of the morphing limb, and quantitatively show how morphing between hydrodynamic and axial-load bearing states can enhance the locomotive performance of a single design over land and in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/ab68e8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!