Production of reactive oxygen species caused by dysregulated endothelial nitric-oxide synthase (eNOS) activity is linked to vascular dysfunction. eNOS is a major target protein of the primary calcium-sensing protein calmodulin. Calmodulin is often modified by the main biomarker of nitroxidative stress, 3-nitrotyrosine (nitroTyr). Despite nitroTyr being an abundant post-translational modification on calmodulin, the mechanistic role of this modification in altering calmodulin function and eNOS activation has not been investigated. Here, using genetic code expansion to site-specifically nitrate calmodulin at its two tyrosine residues, we assessed the effects of these alterations on calcium binding by calmodulin and on binding and activation of eNOS. We found that nitroTyr-calmodulin retains affinity for eNOS under resting physiological calcium concentrations. Results from eNOS assays with calmodulin nitrated at Tyr-99 revealed that this nitration reduces nitric-oxide production and increases eNOS decoupling compared with WT calmodulin. In contrast, calmodulin nitrated at Tyr-138 produced more nitric oxide and did so more efficiently than WT calmodulin. These results indicate that the nitroTyr post-translational modification, like tyrosine phosphorylation, can impact calmodulin sensitivity for calcium and reveal Tyr site-specific gain or loss of functions for calmodulin-induced eNOS activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039552PMC
http://dx.doi.org/10.1074/jbc.RA119.010999DOI Listing

Publication Analysis

Top Keywords

calmodulin
12
nitric-oxide synthase
8
enos
8
post-translational modification
8
enos activation
8
calmodulin nitrated
8
tyrosine nitration
4
nitration calmodulin
4
calmodulin enhances
4
enhances calcium-dependent
4

Similar Publications

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel whose dysfunction leads to intracellular accumulation of chloride ions, dehydration of cell surfaces, and subsequent damage to airway and ductal organs. Beyond its function as a chloride channel, interactions between CFTR, epithelium sodium channel, and solute carrier (SLC) transporter family membrane proteins and cytoplasmic proteins, including calmodulin and Na+/H+ exchanger regulatory factor-1 (NHERF-1), coregulate ion homeostasis. CFTR has also been observed to form mesoscale membrane clusters.

View Article and Find Full Text PDF

The evolution of proteins is primarily driven by the combinatorial assembly of a limited set of pre-existing modules known as protein domains. This modular architecture not only supports the diversity of natural proteins but also provides a robust strategy for protein engineering, enabling the design of artificial proteins with enhanced or novel functions for various industrial applications. Among these functions, oligomerization plays a crucial role in enhancing protein activity, such as by increasing the binding capacity of antibodies.

View Article and Find Full Text PDF

SlIQMs were identified, exogenous calcium and phytohormones induced their expression. SlIQMs's function were verified by VIGS. Calcium synergistically promoted seedling growth with ABA, IAA, MeJA and antagonized growth inhibition with GA or SA.

View Article and Find Full Text PDF

[Mechanism analysis of platelet activation induced by V. vulnificus hemolysin].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

February 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China. *Corresponding authors, E-mail:

Objective To evaluate whether Vibrio vulnificus secreted exotoxin-hemolysin (VVH) can activate platelet, an important blood immune cell, and to explore the possible molecular mechanism of platelet activation by VVH. Methods Transcriptomics and immunohistochemistry were used to analyze whether Vibrio vulnificus infection caused platelet activation in mice. Then, flow cytometry was used to identify whether VVH was the main stimulator of platelet activation.

View Article and Find Full Text PDF

The filopodial myosin DdMyo7 is a slow, calcium regulated motor.

J Biol Chem

March 2025

Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota; Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA. Electronic address:

MyTH4-FERM (MF) myosins are a family of molecular motors with critical roles in the formation and organization of thin membrane protrusions supported by parallel bundles of actin - filopodia, microvilli and stereocilia. The amoeboid MF myosin DdMyo7 is essential for filopodia formation but its mechanism of action is unknown. The motor properties of a forced dimer of the DdMyo7 motor were characterized using an in vitro motility assay to address this question.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!