Prenatal smoke exposure (PSE) is associated with reduced birth weight, impaired fetal development, and increased risk for diseases later in life. Changes in DNA methylation may be involved, as multiple large-scale epigenome-wide association studies showed that PSE is robustly associated with DNA methylation changes in blood among offspring in early life. Insulin-like growth factor-1 (IGF1) is important in growth, differentiation, and repair processes after injury. However, no studies investigated the organ-specific persistence of PSE-induced methylation change of into adulthood. Based on our previous studies on the PSE effect on promoter methylation in fetal and neonatal mouse offspring, we now have extended our studies to adulthood. Our data show that basal promoter methylation generally increased in the lung but decreased in the liver (except for 2 persistent CpG sites in both organs) across three different developmental stages. PSE changed promoter methylation in all three developmental stages, which was organ and sex specific. The PSE effect was less pronounced in adult offspring compared with the fetal and neonatal stages. In addition, the PSE effect in the adult stage was more pronounced in the lung compared with the liver. For most CpG sites, an inverse correlation was found for promoter methylation and mRNA expression when the data of all three stages were combined. This was more prominent in the liver. Our findings provide additional evidence for sex- and organ-dependent prenatal programming, which supports the developmental origins of health and disease (DOHaD) hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00293.2019DOI Listing

Publication Analysis

Top Keywords

promoter methylation
20
prenatal smoke
8
mouse offspring
8
methylation
8
methylation fetal
8
organ sex
8
sex specific
8
dna methylation
8
studies pse
8
fetal neonatal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!