With the potential of delivering reversible capacities of up to 300 mAh/g, Li-rich transition-metal oxides hold great promise as cathode materials for future Li-ion batteries. However, a cohesive synthesis-structure-electrochemistry relationship is still lacking for these materials, which impedes progress in the field. This work investigates how and why different synthesis routes, specifically solid-state and modified Pechini sol-gel methods, affect the properties of LiMnO, a compositionally simple member of this material system. Through a comprehensive investigation of the synthesis mechanism along with crystallographic, morphological, and electrochemical characterization, the effects of different synthesis routes were found to predominantly influence the degree of stacking faults and particle morphology. That is, the modified Pechini method produced isotropic spherical particles with approximately 57% faulting and the solid-state samples possessed heterogeneous morphology with approximately 43% faulting probability. Inevitably, these differences lead to variations in electrochemical performance. This study accentuates the importance of understanding how synthesis affects the electrochemistry of these materials, which is critical considering the crystallographic and electrochemical complexities of the class of materials more generally. The methodology employed here is extendable to studying synthesis-property relationships of other compositionally complex Li-rich layered oxide systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b20754DOI Listing

Publication Analysis

Top Keywords

synthesis routes
12
modified pechini
8
influence synthesis
4
routes crystallography
4
crystallography morphology
4
morphology electrochemistry
4
electrochemistry limno
4
limno potential
4
potential delivering
4
delivering reversible
4

Similar Publications

A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds.

Biomater Sci

January 2025

Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.

Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications.

View Article and Find Full Text PDF

Ammonia Decomposition Catalyzed by Co Nanoparticles Encapsulated in Rare Earth Oxide.

J Phys Chem Lett

January 2025

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.

View Article and Find Full Text PDF

Zero-Valent Copper Catalysis Enables Regio- and Stereoselective Difunctionalization of Alkynes.

Angew Chem Int Ed Engl

January 2025

Jain University - Ramanagara Campus, Centre for Nano and Material Sciences, Jakkasandra Post Kanakapura Taluk, Ramanagara-562112, Bangalore, 562112, Bangalore, INDIA.

The development of a metallic copper-based catalyst system remains a significant challenge. Herein, we report the synthesis of highly stable, active, and reusable Cu0 catalyst for the carboboration of alkynes using carbon electrophiles and bis(pinacolato)diboron (B2pin2) as chemical feedstocks to afford di- and trisubstituted vinylboronate esters in a regio- and stereoselective manner with appreciable turnover number (TON) of up to 2535 under mild reaction conditions. This three-component coupling reaction works well with a variety of substituted electrophiles and alkynes with broad functional group tolerance.

View Article and Find Full Text PDF

Terminal olefins are important platform chemicals, drop-in compatible hydrocarbons and also play an important role as biocontrol agents of plant pathogens. Currently, 1-alkenes are derived from petroleum, although microbial biosynthetic routes are known. Jeotgalicoccus sp.

View Article and Find Full Text PDF

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!