Multidrug resistance (MDR), defined as the ability of cancer cells to gain resistance to both conventional and novel chemotherapy agents, is an important barrier in treating malignancies. Initially, it was discovered that cellular pumps dependent on ATP were the cause of resistance to chemotherapy, and further studies have found that other mechanisms such as increased metabolism of drugs, decreased drug entry, and defective apoptotic pathways are involved in this process. MDR has been the focus of numerous initiatives and countless studies have been undertaken to better understand MDR and formulate strategies to overcome its effects. The current review highlights various nano-drug delivery systems including polymeric/solid lipid/mesoporous silica/metal nanoparticles, dendrimers, liposomes, micelles, and nanostructured lipid carriers to overcome the mechanism of MDR. Nanoparticles are novel gateways to enhance the therapeutic efficacy of anticancer agents at the target site of action due to their tumor-targeting abilities, which can limit the unwanted systemic effects of chemotherapy agents and also reduce drug resistance. Additionally, other innovative strategies including RNA interference as a biological process used to inhibit or silence specific gene expression, natural products as MDR modulators with little systemic toxic effects, which interfere with the functions of proteins involved in drug efflux, and physical approaches such as combination of conventional drug administration with thermal/ultrasound/photodynamic strategies are also highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.2215DOI Listing

Publication Analysis

Top Keywords

multidrug resistance
8
chemotherapy agents
8
resistance
5
mdr
5
overcoming multidrug
4
resistance cancer
4
cancer progress
4
progress nanotechnology
4
nanotechnology horizons
4
horizons multidrug
4

Similar Publications

Background: Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies.

Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties.

View Article and Find Full Text PDF

High-risk clones harboring β-lactamases: 2024 update.

Heliyon

January 2025

Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Carbapenem-resistant is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of that display phenotypes of MDR/XDR have been defined as high-risk global clones.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the biofilm formation abilities of clinical strains, assess their antibiotic susceptibility patterns, and identify the prevalence of adhesion-associated genes.

Methodology: In this study, a total of 60  strains were collected from urine, pus, wounds, blood, body fluid, and sputum in health centers affiliated with Abadan University of Medical Sciences, Iran. Strains were identified via microbiological methods and polymerase chain reaction (PCR) to target the gene.

View Article and Find Full Text PDF

Background: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!