Defective Kernel 1 (DEK1) is genetically at the nexus of the 3D morphogenesis of land plants. We aimed to localize DEK1 in the moss Physcomitrella patens to decipher its function during this process. To detect DEK1 in vivo, we inserted the tdTomato fluorophore into PpDEK1 gene locus. Confocal microscopy coupled with the use of time-gating allowed the precise DEK1 subcellular localization during 3D morphogenesis. DEK1 localization displays a strong polarized signal, as it is restricted to the plasma membrane domain between recently divided cells during the early steps of 3D growth development as well as during the subsequent vegetative growth. The signal furthermore displays a clear developmental pattern because it is only detectable in recently divided and elongating cells. Additionally, DEK1 localization appears to be independent of its calpain domain proteolytic activity. The DEK1 polar subcellular distribution in 3D tissue developing cells defines a functional cellular framework to explain its role in this developmental phase. Also, the observation of DEK1 during spermatogenesis suggests another biological function for this protein in plants. Finally the DEK1-tagged strain generated here provides a biological platform upon which further investigations into 3D developmental processes can be performed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.16417DOI Listing

Publication Analysis

Top Keywords

dek1
9
displays strong
8
physcomitrella patens
8
dek1 localization
8
dek1 displays
4
strong subcellular
4
subcellular polarity
4
polarity physcomitrella
4
patens growth
4
growth defective
4

Similar Publications

CLE peptides act via the receptor-like kinase CRINKLY 4 in gametophore development.

Plant Signal Behav

December 2024

Faculty of Natural Sciences, Department of Plant Physiology, Comenius University in Bratislava, Bratislava, Slovak Republic.

The CLAVATA pathway plays a key role in the regulation of multicellular shoot and root meristems in flowering plants. In Arabidopsis, CLAVATA 3-like signaling peptides (CLEs) act via receptor-like kinases CLAVATA 1 and CRINKLY 4 (CR4). In the moss , PpCLAVATA and PpCR4 were previously studied independently and shown to play conserved roles in the regulation of cell proliferation and differentiation.

View Article and Find Full Text PDF

Calpains are cysteine proteases that control cell fate transitions whose loss of function causes severe, pleiotropic phenotypes in eukaryotes. Although mainly considered as modulatory proteases, human calpain targets are directed to the N-end rule degradation pathway. Several such targets are transcription factors, hinting at a gene-regulatory role.

View Article and Find Full Text PDF

Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution.

View Article and Find Full Text PDF

DEFECTIVE KERNEL1 regulates cellulose synthesis and affects primary cell wall mechanics.

Front Plant Sci

March 2023

La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC, Australia.

The cell wall is one of the defining features of plants, controlling cell shape, regulating growth dynamics and hydraulic conductivity, as well as mediating plants interactions with both the external and internal environments. Here we report that a putative mechanosensitive Cys-protease DEFECTIVE KERNEL1 (DEK1) influences the mechanical properties of primary cell walls and regulation of cellulose synthesis. Our results indicate that DEK1 is an important regulator of cellulose synthesis in epidermal tissue of cotyledons during early post-embryonic development.

View Article and Find Full Text PDF

DEK has a short isoform (DEK isoform-2; DEK2) that lacks amino acid residues between 49-82. The full-length DEK (DEK isoform-1; DEK1) is ubiquitously expressed and plays a role in different cellular processes but whether DEK2 is involved in these processes remains elusive. We stably overexpressed DEK2 in human bone marrow stromal cell line HS-27A, in which endogenous DEKs were intact or suppressed via short hairpin RNA (sh-RNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!