Specimen-Specific Finite Element Models for Predicting Fretting Wear in Total Hip Arthroplasty Tapers.

J Biomech Eng

U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, 10903 New Hampshire Avenue, Building 62, Room 2124, Silver Spring, MD 20993.

Published: July 2020

Products from fretting wear and corrosion in the taper junction of total hip arthroplasty (THA) devices can lead to adverse local tissue reactions. Predicting damage as a function of design parameters would aid in the development of more robust devices. The objectives of this study were to develop an automated method for identifying areas of fretting wear on THA taper junctions, and to assess the predictive ability of a finite element model to simulate fretting wear in THA taper junctions. THA constructs were fatigue loaded, thus inducing damage on the stem taper. An automated imaging and analysis algorithm quantified fretting wear on the taper surfaces. Specimen-specific finite element models were used to calculate fretting work done (FWD) at the taper junction. Simulated FWD was correlated to imaged fretting wear. Results showed that the automated imaging approach identified fretting wear on the taper surface. Additionally, finite element models showed the greatest predictive ability for tapers exhibiting distal contact. Finite element models predicted an average of 30.3% of imaged fretting wear. With additional validation, the imaging and finite element techniques may be useful to manufacturers and regulators in the development and review of new THA devices.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4045904DOI Listing

Publication Analysis

Top Keywords

fretting wear
32
finite element
24
element models
16
fretting
9
specimen-specific finite
8
wear
8
total hip
8
hip arthroplasty
8
taper junction
8
tha devices
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!