Mirror movements (MM) can be a clinical manifestation of unilateral cerebral palsy (UCP) causing involuntary movements when attempting to use either hand for functional activities. Atypical development of the corticospinal tract (CST) contributes to impairments in observed motor movements and functional activities. However, little is known about the underlying neurophysiology and contribution of the CST to MM. The current case study characterizes MM in 13 children and young adults with UCP ranging in age from 7 to 19 years and includes clinical and neurophysiologic variables. Clinical profiles included MM of each hand (ie, Woods and Teuber), bimanual coordination and hand use (Assisting Hand Assessment [AHA]), and perception of performance (Canadian Occupational Performance Measure [COPM]). We measured the strength of motor-evoked potentials (MEP) elicited from single-pulse transcranial magnetic stimulation (TMS) of each hemisphere to create a ratio of hemispheric responses. Our sample included three types of CST circuitry: ipsilateral (n = 5), bilateral (n = 3), and contralateral (n = 4). The MEP ratio ranged from 0 to 1.45 (median 0.11) with greater MM observed in participants with ratios greater than 0.5. We observed a positive relationship between the MEP ratio and the more-affected MM score, meaning participants with larger ipsilateral responses from contralesional stimulation (eg, the contralesional hemisphere was stimulated with TMS resulting in an ipsilateral MEP response), as compared with contralateral responses, displayed greater MM than those that did not. There was no relationship between MM and function as measured by the AHA or COPM. These findings suggest a role of the contralesional hemisphere to MM, which could serve as a therapeutic target for interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453659 | PMC |
http://dx.doi.org/10.1177/1550059419899323 | DOI Listing |
Brain Sci
January 2025
Waisman Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
Background: Perinatal brain injury is a leading cause of developmental disabilities, including cerebral palsy. However, further work is needed to understand early brain development in the presence of brain injury. In this case report, we examine the longitudinal neuromotor development of a term infant following a significant loss of right-hemispheric brain tissue due to a unilateral ischemic stroke.
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Brainstem tumors are bounded by a compact topography of eloquent tracts, cranial nerves, and nuclei. Reliable intraoperative neuromonitoring aids microneurosurgical technique to optimize safe resection. The authors present a case of motor mapping-guided resection of a recurrent brainstem pilocytic astrocytoma.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).
Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.
JAMA Neurol
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China.
Importance: Autoantibodies targeting astrocytes, such as those against glial fibrillary acidic protein (GFAP) or aquaporin protein 4, are crucial diagnostic markers for autoimmune astrocytopathy among central nervous system (CNS) autoimmune disorders. However, diagnosis remains challenging for patients lacking specific autoantibodies.
Objective: To characterize a syndrome of unknown meningoencephalomyelitis associated with an astrocytic autoantibody.
J Neuroeng Rehabil
January 2025
Shirley Ryan AbilityLab, Chicago, IL, USA.
There is a consensus that motor recovery post-stroke primarily depends on the degree of the initial connectivity of the ipsilesional corticospinal tract (CST). Indeed, if the residual CST connectivity is sufficient to convey motor commands, the neuromotor system continues to use the CST predominantly, and motor function recovers up to 80%. In contrast, if the residual CST connectivity is insufficient, hand/arm dexterity barely recovers, even as the phases of stroke progress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!