Triplet-Triplet Annihilation Upconversion Based Nanosensors for Fluorescence Detection of Potassium.

ACS Sens

Chemical and Biological Engineering Department , Colorado School of Mines, Golden , Colorado 80401 , United States.

Published: February 2020

Typical ionophore-based nanosensors use Nile blue derived indicators called chromoionophores, which must contend with strong background absorption, autofluorescence, and scattering in biological samples that limit their usefulness. Here, we demonstrate potassium-selective nanosensors that utilize triplet-triplet annihilation upconversion to minimize potential optical interference in biological media and a pH-sensitive quencher molecule to modulate the upconversion intensity in response to changes in analyte concentration. A triplet-triplet annihilation dye pair (platinum(II) octaethylporphyrin and 9,10-diphenylanthracene) was integrated into nanosensors containing an analyte binding ligand (ionophore), charge-balancing additive, and a pH indicator quencher. The nanosensor response to potassium was shown to be reversible and stable for 3 days. In addition, the nanosensors are selective against sodium, calcium, and magnesium (selectivity coefficients in log units of -2.2 for calcium, -2.0 for sodium, and -2.4 for magnesium), three interfering ions found in biological samples. The lack of signal overlap between the upconversion nanosensors and GFP, a common biological fluorescent indicator, is demonstrated in confocal microscope images of sensors embedded in a bacterial biofilm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b02252DOI Listing

Publication Analysis

Top Keywords

triplet-triplet annihilation
12
annihilation upconversion
8
biological samples
8
nanosensors
6
upconversion
4
upconversion based
4
based nanosensors
4
nanosensors fluorescence
4
fluorescence detection
4
detection potassium
4

Similar Publications

Efficient harvesting of triplet excitons multiple fast TTA up-conversion and high-lying reverse intersystem crossing channels for efficient blue fluorescent organic light-emitting diodes.

Chem Sci

January 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China

The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.

View Article and Find Full Text PDF

Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.

View Article and Find Full Text PDF

Photofunctional cyclophane host-guest systems.

Chem Commun (Camb)

January 2025

Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Modulation of optical properties through smart protein matrices is exemplified by a few examples in nature such as rhodopsin (absorption wavelength tuning) and the green fluorescence protein (emission), but in general, the scope found in nature for the matrix-controlled photofunctions remains rather limited. In this review, we present cyclophane-based supramolecular host-guest complexes for which electronic interactions between the cyclophane host and mostly planar aromatic guest molecules can actively modulate excited-state properties in a more advanced way involving both singlet and triplet excited states. We begin by highlighting photofunctional host-guest systems for on-off fluorescence switching and chiroptical functions using bay-functionalized perylene bisimide cyclophanes.

View Article and Find Full Text PDF

Design Rule of Tetradentate Ligand-Based Pt(II) Complex for Efficient Singlet Exciton Harvesting in Fluorescent Organic Light-Emitting Diodes.

J Phys Chem Lett

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

Controlling intermolecular interactions, such as triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), is crucial for achieving high quantum efficiency in organic light-emitting diodes (OLEDs) by suppressing exciton loss. This study investigates the molecular design of tetradentate Pt(II) complexes used for singlet exciton harvesting in fluorescent OLEDs to elucidate the relationship between the chemical structure of the ligands and exciton quenching mechanisms. It was discovered that the bulkiness of substituents is pivotal for maximizing quantum efficiency in these devices.

View Article and Find Full Text PDF

The advancement of organic room temperature phosphorescence (RTP) materials has attracted considerable interest owing to their extensive applications. Their distinct advantages, including a metal-free composition, low toxicity, and facile synthesis under ambient conditions, make them highly desirable. This study examines the delayed fluorescence (DF) and RTP of metal-free, amorphous indenophenanthridine (IND)-based derivatives (1-10) and provides insights into molecular functionalisation and host matrix effects on delayed emission (RTP and DF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!