Long noncoding RNA-regulator of reprogramming alleviates hypoxia-induced cerebral injury in mice model and human via modulating apoptosis complexes.

J Integr Neurosci

Department of Neurology, Yiyang Central Hospital, No. 336 Dongfengnan Road, Hengyang City, Hunan Province, 413000, P. R. China.

Published: December 2019

Ischemic stroke causes cerebral hypoxia, while long non-coding RNA regulator of reprogramming is associated with hypoxia. To find a new intervention target to protect hypoxic cerebral tissue and a potential biomarker from reflecting the severity of hypoxia after ischemic stroke, our research explored the expression pattern and function of the regulator of reprogramming in cerebral hypoxia-induced injury. The expression pattern and the function of the regulator of reprogramming were explored in mice with middle cerebral artery occlusion, and human brain microvascular endothelial cells underwent oxygen-glucose deprivation treatment. A case-control study, including 223 ischemic stroke patients and 155 controls were also conducted to investigate its correlation with ischemic stroke clinical characteristics. Results showed that the regulator of reprogramming increased significantly in middle cerebral artery occlusion in mice (P < 0.05), and its level remained stable within 2 to 48 h after the implement of middle cerebral artery occlusion. Oxygen-glucose deprivation up-regulated the expression of regulator of reprogramming, and regulator of reprogramming promoted ASK-1/STRAP/14-3-3 complex formation to inhibit the activation of TNF-α/ASK-1-mediated apoptosis of human brain microvascular endothelial cells, while small interfering ribonucleic acid (RNA) targeting regulator of reprogramming amplified these effects. Regulator of reprogramming increased and maintained stable within 3 to 48 h of ischemic stroke onset in patients, and was negatively associated with the National Institutes of Health Stroke Scale (NIHSS) (r = -0.708, P < 0.001), high sensitivity C-reactive protein (Hs-CRP) (r = -0.683, P < 0.001) level, infarct volume (r = -0.579, P < 0.001), and modified Rankin scale (mRS) (r = -0.728, P < 0.001). These results indicate that the regulator of reprogramming can alleviate cerebral hypoxia-induced injury by suppressing TNFα-induced apoptosis of vascular endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.jin.2019.04.1194DOI Listing

Publication Analysis

Top Keywords

regulator reprogramming
36
ischemic stroke
20
middle cerebral
12
cerebral artery
12
artery occlusion
12
endothelial cells
12
reprogramming
10
regulator
9
cerebral
8
expression pattern
8

Similar Publications

ZAR1/2-Regulated Epigenetic Modifications are Essential for Age-Associated Oocyte Quality Maintenance and Zygotic Activation.

Adv Sci (Weinh)

January 2025

Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.

View Article and Find Full Text PDF

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.

View Article and Find Full Text PDF

The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!