Biology textbooks describe the small changes in the beaks of the Galápagos finches as exemplars of how birds evolve in response to environmental changes. However, recent studies of the abundant fossil birds at Rancho La Brea find no evidence of evolutionary responses to the dramatic climate changes of the glacial-interglacial cycle over the past 35 000 years: none of the large birds exhibit any change in body size or limb proportions, even during the last glacial maximum approximately 18 000-20 000 years ago, when the southern California chaparral was replaced by snowy coniferous forests. However, these are all large birds with large ranges and broad habitat preferences, capable of living in many different environments. Perhaps the smaller birds at La Brea, which have smaller home ranges and narrower habitats, might respond to climate more like Galápagos finches. The only 3 common small birds at La Brea are the western meadowlark, the yellow-billed magpie and the raven. In this study, we demonstrate that these birds also show complete stasis over the last glacial-interglacial cycle, with no statistically significant changes between dated pits. Recent research suggests that the small-scale changes over short timescales seen in the Galápagos finches are merely fluctuations around a stable morphology, and rarely lead to long-term accumulation of changes or speciation. Instead, the prevalence of stasis supports the view that long-term directional changes in morphology are quite rare. While directional changes in morphology occur frequently over short (<1 ka) timescales, in the long term such changes only rarely remain stable for long enough to appear in the fossil record.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1749-4877.12426 | DOI Listing |
Animals (Basel)
January 2025
School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
Conspicuousness increases the risk of predation. One strategy to reduce this risk is to increase vigilance. We investigated the frequency of head movements as a measure of vigilance at waterholes in two related songbird species that differed in their conspicuousness: the Gouldian finch and the long-tailed finch.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.
This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania.
Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial for their breeders, especially considering that most companion birds do not display clear sexual characteristics.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
Background/objectives: Dartmoor Estate Tea plantation in Devon, UK, is renowned for its unique microclimate and varied soil conditions, which contribute to the distinctive flavours and chemical profiles of tea. The chemical diversity of fresh leaf samples from various garden locations was explored within the plantation.
Methods: Fresh leaf, which differed by location, cultivar, time of day, and variety, was analysed using Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS).
Zool Res
January 2025
BGI Research, Hangzhou, Zhejiang 310030, China.
The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( ) neocortex, complemented by datasets from humans ( ), mice ( ), zebra finches ( ), turtles ( ), and lizards ( s), enabling comprehensive cross-species comparison.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!