Electrocatalysts with high catalytic activity, high stability and low cost are critical to the hydrogen evolution reaction (HER). In this paper, sulfur(S)-doped NiCoP nanowire arrays on a carbon fiber paper skeleton (S-NiCoP NW/CFP) are prepared, and it is demonstrated that the electrocatalytic properties of NiCoP in alkaline solution could be well improved by sulfur doping. In 1.0 M KOH, only an overpotential of 172 mV (vs. RHE) at 100 mA cm-2 is required for S doped NiCoP nanowires on CFP, and the turnover frequency (TOF) is 1.71 times that of NiCoP at an overpotential of 100 mV, indicating its superior intrinsic activity. Density functional theory (DFT) calculations show that S doping could lower the center of the d-band, and thus weaken the interaction between NiCoP and the intermediates. This leads to an optimized hydrogen adsorption Gibbs free energy (ΔGH*) and faster desorption of OH*. This study offers a promising way to design and optimize electrocatalysts for the HER in alkaline solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr08583a | DOI Listing |
RSC Adv
January 2025
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University 197 Inje-ro Gimhae Gyeongnam-do 50834 Republic of Korea
Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Wolkite University, P. O. Box: 07, Wolkite, Ethiopia.
This study uses the Quantum ESPRESSO code to introduce Hubbard correction (U) to the density functional theory (DFT) in order to examine the effects of non-metals (C, F, N, and S) doping on the structural, electronic, and optical characteristics of rutile TiO. Rutile TiO is a substance that shows promise for use in renewable energy production, including fuels and solar energy, as well as environmental cleanup. Its wide bandgap, however, restricts their uses to areas with UV light.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
CO capture from the flue gas is a promising approach to mitigate global warming. However, regulating the carbon-based adsorbent in terms of textural and surface modification is still a challenge. To overcome this issue, the present study depicts the development of cost-effective and high-performance CO adsorbents derived from petroleum coke, an industrial by-product, using a two-step process involving thiourea modification and KOH activation.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
Developing nonprecious metal-based electrocatalysts with exceptional activity and durability for water electrolysis remains a significant challenge. Herein, we report a highly efficient bifunctional electrocatalyst composed of sulfur-doped vanadium metal-organic frameworks (S@V-MOF) integrated with multiwalled carbon nanotubes (MWCNTs) to promote the synergistic effect between S@V-MOF and MWCNTs and modulate the electronic structure of the catalyst, which eventually enhanced its electrocatalytic performance. The S@V-MOF/MWCNT catalyst loaded at the Ni foam electrode exhibits remarkable activity for both the hydrogen evolution reaction (HER) in acidic media and oxygen evolution reaction (OER) in alkaline media, requiring overpotentials of 48 and 227 mV, respectively, to reach a current density of 10 mA cm.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.
Defining the active sites and further optimizing their activity are of great significance for enhancing the hydrogen evolution reaction (HER) performances, especially for inexpensive Ni-based catalysts doped with metals and nonmetal elements. This work reports the role of the incorporated molybdenum and sulfur in enhancing the HER activity of nickel. The prepared molybdenum and sulfur coincorporated Ni (NMS) electrocatalysts exhibit excellent HER performance, with an overpotential and Tafel slope of 77.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!